A280575
E.g.f. satisfies: A(x - Integral 4*A(x) dx) = x + Integral A(x) dx.
Original entry on oeis.org
1, 5, 85, 2625, 119225, 7209725, 547774525, 50342086425, 5448583486625, 680816992367125, 96720369562897125, 15433474653279056625, 2738894920523846767625, 536165521694896664958125, 114986014404299081313978125, 26857525461337375682549015625, 6797751676147997291181732240625, 1856223312322488721077123869053125, 544728880837527263669006279810003125, 171209466763535665605709125529165390625
Offset: 1
E.g.f.: A(x) = x + 5*x^2/2! + 85*x^3/3! + 2625*x^4/4! + 119225*x^5/5! + 7209725*x^6/6! + 547774525*x^7/7! + 50342086425*x^8/8! + 5448583486625*x^9/9! + 680816992367125*x^10/10! + 96720369562897125*x^11/11! + 15433474653279056625*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 4*G(x)) = x + G(x) where
G(x) = x^2/2! + 5*x^3/3! + 85*x^4/4! + 2625*x^5/5! + 119225*x^6/6! + 7209725*x^7/7! + 547774525*x^8/8! + 50342086425*x^9/9! + 5448583486625*x^10/10! + 680816992367125*x^11/11! + 96720369562897125*x^12/12! +...
Also, A(x) = x + 5 * G( (4*A(x) + x)/5 ).
RELATED SERIES.
We have (4*A(x) + x)/5 = Series_Reversion( x - Integral 4*A(x) dx ), where
(4*A(x) + x)/5 = x + 4*x^2/2! + 68*x^3/3! + 2100*x^4/4! + 95380*x^5/5! + 5767780*x^6/6! + 438219620*x^7/7! + 40273669140*x^8/8! + 4358866789300*x^9/9! + 544653593893700*x^10/10! + 77376295650317700*x^11/11! + 12346779722623245300*x^12/12! +...
Further, A( (4*A(x) + x)/5 ) = (A'(x) - 1)/(4*A'(x) + 1), which begins
A( (4*A(x) + x)/5 ) = x + 9*x^2/2! + 213*x^3/3! + 8365*x^4/4! + 463905*x^5/5! + 33459905*x^6/6! + 2985550445*x^7/7! + 318647659765*x^8/8! + 39707695580825*x^9/9! + 5672802966674825*x^10/10! + 916011286267596325*x^11/11! + 165283895506659660925*x^12/12! +...
-
m = 21; A[_] = 0;
Do[A[x_] = -x/4 + 5/4 InverseSeries[x-Integrate[4A[x], x] + O[x]^m], {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
-
/* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
{a(n, p=4, q=1) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n, 4, 1), ", "))
-
/* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
{a(n, p=4, q=1) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
for(n=1, 30, print1(a(n, 4, 1), ", "))
-
/* Informal code to generate the first N terms: */
{N=20; p=4; q=1; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}
A279845
E.g.f. satisfies: A(x - Integral 2*A(x) dx) = x - Integral A(x) dx.
Original entry on oeis.org
1, 1, 7, 87, 1577, 37921, 1143991, 41734167, 1793837945, 89100737537, 5038278258759, 320488252355991, 22712229678267017, 1778818548078114337, 152926844472960316055, 14348332105800041202903, 1461880180517958608890585, 161034066043430013259095681, 19105043857756090069661974951, 2432865068875486088572762200535, 331511875063241457659846364208233, 48205214775404458968179455649349921, 7461345443274460130807423699070922103
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 7*x^3/3! + 87*x^4/4! + 1577*x^5/5! + 37921*x^6/6! + 1143991*x^7/7! + 41734167*x^8/8! + 1793837945*x^9/9! + 89100737537*x^10/10! + 5038278258759*x^11/11! + 320488252355991*x^12/12! + 22712229678267017*x^13/13! + 1778818548078114337*x^14/14! + 152926844472960316055*x^15/15! +...
Cf.
A277410,
A210949,
A277403,
A279843,
A279844,
A280570,
A280571,
A280572,
A280573,
A280574,
A280575.
-
/* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
{a(n, p=2, q=-1) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n, 2, -1), ", "))
-
/* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
{a(n, p=2, q=-1) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
for(n=1, 30, print1(a(n, 2, -1), ", "))
-
/* Informal code to generate the first N terms: */
{N=20; p=2; q=-1; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}
A280570
E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral 3*A(x) dx.
Original entry on oeis.org
1, 4, 28, 332, 5748, 131940, 3791692, 131375324, 5343640212, 250142552212, 13271217848604, 788346022938556, 51916178572447140, 3759254932421361284, 297243198474965188732, 25513664852425377663756, 2365246919693613357168916, 235776253411115081902083556, 25174157913006507920211300588, 2869108641038261410331666767772
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 28*x^3/3! + 332*x^4/4! + 5748*x^5/5! + 131940*x^6/6! + 3791692*x^7/7! + 131375324*x^8/8! + 5343640212*x^9/9! + 250142552212*x^10/10! + 13271217848604*x^11/11! + 788346022938556*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - G(x)) = x + 3*G(x) where
G(x) = x^2/2! + 4*x^3/3! + 28*x^4/4! + 332*x^5/5! + 5748*x^6/6! + 131940*x^7/7! + 3791692*x^8/8! + 131375324*x^9/9! + 5343640212*x^10/10! + 250142552212*x^11/11! + 13271217848604*x^12/12! +...
Also, A(x) = x + 4 * G( (A(x) + 3*x)/4 ).
RELATED SERIES.
We have (A(x) + 3*x)/4 = Series_Reversion( x - Integral A(x) dx ), where
(A(x) + 3*x)/4 = x + x^2/2! + 7*x^3/3! + 83*x^4/4! + 1437*x^5/5! + 32985*x^6/6! + 947923*x^7/7! + 32843831*x^8/8! + 1335910053*x^9/9! + 62535638053*x^10/10! + 3317804462151*x^11/11! + 197086505734639*x^12/12! +...
Further, A( (A(x) + 3*x)/4 ) = (A'(x) - 1)/(A'(x) + 3), which begins
A( (A(x) + 3*x)/4 ) = x + 5*x^2/2! + 47*x^3/3! + 707*x^4/4! + 14825*x^5/5! + 401033*x^6/6! + 13340739*x^7/7! + 528281555*x^8/8! + 24323141773*x^9/9! + 1279128727141*x^10/10! + 75770789421947*x^11/11! + 4999463984999615*x^12 +...
Cf.
A277410,
A210949,
A277403,
A279843,
A279844,
A279845,
A280571,
A280572,
A280573,
A280574,
A280575.
-
m = 21; A[_] = 0;
Do[A[x_] = -3 x + 4 InverseSeries[x - Integrate[A[x], x] + O[x]^m], {m}];
CoefficientList[A[x], x] * Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
-
/* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
{a(n, p=1, q=3) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n, 1, 3), ", "))
-
/* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
{a(n, p=1, q=3) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
for(n=1, 30, print1(a(n, 1, 3), ", "))
-
/* Informal code to generate the first N terms: */
{N=20; p=1; q=3; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}
A067146
Shifts left under exponential reversion.
Original entry on oeis.org
1, 1, -1, 4, -29, 309, -4383, 78121, -1684706, 42801222, -1255919755, 41918624013, -1572257236114, 65619165625383, -3022617826829288, 152615633802149416, -8397224009015443509, 500957609480739613321
Offset: 1
Comments