cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A317659 Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
    1
    1    0
    1    1    0
    1    3    1    0
    1    6    5    1    0
    1   10   17    7    1    0
    1   15   43   33    9    1    0
    1   21   92  118   55   11    1    0
    1   28  174  341  252   82   13    1    0
    1   36  302  845  935  463  115   15    1    0
    1   45  490 1864 2921 2103  769  153   17    1    0
    1   55  755 3755 7981 8012 4145 1187  197   19    1    0
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    Table[Length[Select[maxUsing[n],Length[Position[#,"o"]]==k&]],{n,12},{k,n}]

A318151 e-numbers of unlabeled rooted trees with empty leaves o[] allowed. A number n is in the sequence iff n = 2^(prime(y_1) * ... * prime(y_k)) for some k >= 0 and y_1, ..., y_k already in the sequence.

Original entry on oeis.org

1, 2, 4, 8, 16, 64, 128, 256, 512, 4096, 16384, 65536, 262144, 524288, 2097152, 16777216, 134217728, 268435456, 4294967296, 68719476736, 274877906944, 4398046511104, 281474976710656, 562949953421312, 9007199254740992, 18014398509481984, 72057594037927936
Offset: 1

Views

Author

Gus Wiseman, Aug 19 2018

Keywords

Comments

If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no subexpressions in heads f[x_1, ..., x_k][y_1, ..., y_k] where k,j >= 0.

Crossrefs

A322752 Number of "funny trees" on n nodes.

Original entry on oeis.org

0, 2, 3, 9, 30, 110, 423, 1706, 7085, 30186, 131071, 578194, 2583377, 11667874, 53180604, 244301512, 1129947243, 5257592237, 24592945975, 115578827200, 545478791124, 2584216074295, 12285025045259, 58584860422121, 280181867792399, 1343499543045511, 6457845289959966
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2018

Keywords

Comments

For precise definition see Example 15.3.7 of Bona (2015).
The trees considered here have nodes of two types: black and white. The child nodes of black nodes are unordered and can be either black or white. The child nodes of white nodes are linearly ordered and must be black. - Andrew Howroyd, Feb 06 2025

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 1002.

Crossrefs

Cf. A277996.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(w=O(x),b=O(x)); for(n=1, n, w=x/(1-b); b=x*(1 + x*Ser(EulerT(Vec(b+w))))); Vec(b+w, -n-1)} \\ Andrew Howroyd, Feb 06 2025

Extensions

Offset corrected and a(7) onwards from Andrew Howroyd, Feb 06 2025
Previous Showing 31-33 of 33 results.