cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A281972 Number of sets of exactly n positive integers <= n+9 having a square element sum.

Original entry on oeis.org

1, 3, 8, 26, 69, 166, 365, 750, 1446, 2646, 4645, 7856, 12852, 20411, 31626, 47910, 71022, 103342, 147982, 208554, 289572, 397140, 538319, 720965, 955716, 1255661, 1634233, 2108003, 2699453, 3431884, 4329465, 5426928, 6764353, 8377805, 10314695, 12640228
Offset: 0

Views

Author

Alois P. Heinz, Feb 03 2017

Keywords

Examples

			a(1) = 3: {1}, {4}, {9}.
a(2) = 8: {1,3}, {1,8}, {2,7}, {3,6}, {4,5}, {5,11}, {6,10}, {7,9}.
		

Crossrefs

A diagonal of A281871.

Formula

a(n) = A281871(n+9,n).

A281973 Number of sets of exactly n positive integers <= n+10 having a square element sum.

Original entry on oeis.org

1, 3, 9, 33, 93, 242, 568, 1237, 2532, 4905, 9071, 16113, 27654, 45997, 74388, 117408, 181271, 274163, 407066, 594568, 855087, 1211979, 1695785, 2344564, 3204123, 4332497, 5802690, 7699864, 10126446, 13212343, 17109772, 21991217, 28071644, 35611707, 44895662
Offset: 0

Views

Author

Alois P. Heinz, Feb 03 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {1}, {4}, {9}.
a(2) = 9: {1,3}, {1,8}, {2,7}, {3,6}, {4,5}, {4,12}, {5,11}, {6,10}, {7,9}.
		

Crossrefs

A diagonal of A281871.

Formula

a(n) = A281871(n+10,n).

A281994 Number of set partitions of [n] into subsets whose element sums are squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 1, 7, 37, 22, 264, 310, 1181, 2350, 8102, 38471, 136528, 738072, 2811383, 12163208, 45121906, 160620225, 729516611, 3962353196
Offset: 0

Views

Author

Alois P. Heinz, Feb 04 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 1: 1.
a(4) = 1: 1|234.
a(6) = 1: 1|2356|4.
a(7) = 1: 1|27|36|45.
a(8) = 7: 12345678, 1258|367|4, 1267|358|4, 1357|268|4, 13|268|457, 178|2356|4, 18|27|36|45.
a(10) = 22: 1|234|5678(10)|9, 1|23569|4|78(10), 1|2356|4|78(10)|9, 1|23578|4|69(10), 1|23578|4|6(10)|9, 1|23678(10)|45|9, 1|24578(10)|36|9, 1|27|34568(10)|9, 1|258(10)|3679|4, 1|258(10)|367|4|9, 1|258(10)|36|4|79, 1|259|36|4|78(10), 1|267(10)|3589|4, 1|267(10)|358|4|9, 1|2689|357(10)|4, 1|268|357(10)|4|9, 1|27|3589|4|6(10), 1|27|358|4|69(10), 1|27|358|4|6(10)|9, 1|2789(10)|36|45, 1|27|3689(10)|45, 1|27|36|4589(10).
		

Crossrefs

A377572 Total number of elements (with multiplicity) in all subsets of [n] having a square element sum.

Original entry on oeis.org

0, 1, 1, 3, 7, 12, 30, 61, 124, 247, 491, 980, 1962, 3949, 7916, 15863, 31815, 63692, 127570, 255529, 511627, 1024421, 2051038, 4105848, 8218842, 16450989, 32926094, 65897438, 131879440, 263915641, 528125412, 1056802576, 2114639286, 4231226460, 8466125334, 16939180972
Offset: 0

Views

Author

Alois P. Heinz, Nov 01 2024

Keywords

Examples

			a(4) = 7: {1}, {4}, {1,3}, {2,3,4}.
a(5) = 12: {1}, {4}, {1,3}, {4,5}, {1,3,5}, {2,3,4}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, `if`(issqr(s),
          [1, 0], 0), b(n-1, s)+(p-> p+[0, p[1]])(b(n-1, s+n)))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..35);

Formula

a(n) = Sum_{k=0..n} k * A281871(n,k).
Previous Showing 21-24 of 24 results.