cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A373316 Numbers k such that k and k+2 are both primitive abundant numbers.

Original entry on oeis.org

18, 102, 364, 366, 474, 532, 642, 834, 1036, 1146, 1182, 1374, 1504, 1696, 1876, 1986, 2210, 2584, 2994, 3052, 3126, 3556, 4396, 4542, 4564, 5032, 5514, 5572, 5574, 5622, 6232, 6412, 6522, 6976, 7026, 7206, 7912, 7924, 8202, 8596, 8706, 9654, 9714
Offset: 1

Views

Author

Abhiram R Devesh, May 31 2024

Keywords

Examples

			18 = 2*3*3 is an abundant number, but its proper divisors are 1, 2, 3, 6 and 9, none of which are abundant.
18 + 2 = 20 = 2*2*5 is an abundant number, but its proper divisors are 1, 2, 4, 5 and 10, none of which are abundant.
Thus, both 18 and 20 are primitive abundant numbers, so 18 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1); primAbQ[n_] := primAbQ[n] = (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2; Select[Range[2, 10^4], primAbQ[#] && primAbQ[# + 2] &] (* Amiram Eldar, Jul 20 2024 *)

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));
Previous Showing 11-12 of 12 results.