cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A284571 Permutation of natural numbers: a(1) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(1+n)) = 1 + 2*a(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 9, 5, 12, 32, 17, 18, 10, 24, 33, 64, 65, 34, 11, 36, 20, 48, 129, 7, 66, 19, 37, 128, 130, 68, 49, 22, 72, 40, 97, 96, 258, 14, 69, 132, 38, 74, 73, 21, 256, 260, 81, 13, 29, 136, 15, 98, 521, 44, 39, 144, 80, 194, 257, 192, 516, 23, 137, 28, 138, 264, 45, 76, 148, 146, 197, 42, 512, 147, 193, 520, 162, 26, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Crossrefs

Inverse: A284572.
Similar or related permutations: A243343, A243345, A277695, A285111.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    def a(n):
        if n==1: return 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n) - 1)
    [a(n) for n in range(1, 121)] # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 1, for n > 1, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)-1).

A322806 Lexicographically earliest such sequence a that a(i) = a(j) => A285330(i) = A285330(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 4, 5, 7, 8, 9, 10, 11, 9, 6, 12, 13, 14, 15, 15, 16, 17, 18, 7, 19, 11, 20, 21, 22, 23, 8, 18, 24, 13, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 22, 38, 39, 40, 41, 42, 29, 43, 44, 45, 46, 47, 48, 49, 50, 10, 37, 51, 52, 28, 53, 54, 55, 56, 57, 58, 59, 60, 25, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 38
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2018

Keywords

Comments

Restricted growth sequence transform of A285330.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(issquarefree(n),A048675(n),A285328(n));
    v322806 = rgs_transform(vector(up_to,n,A285330(n)));
    A322806(n) = v322806[n];

A322811 a(1) = 0; for n > 1, a(n) = A001221(A285330(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Comments

For all i, j:
A322806(i) = A322806(j) => a(i) = a(j),
A322807(i) = A322807(j) => a(i) = a(j).

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A001221(A285330(n)).
If n > 1 is squarefree, a(n) = A322812(n) = A001221(A048675(n)), otherwise a(n) = A001221(A285328(n)) = A001221(n).

A322861 Lexicographically earliest such sequence a that a(i) = a(j) => A278222(A285330(i)) = A278222(A285330(j)) for all i, j.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 2, 4, 3, 2, 2, 3, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 2, 5, 2, 2, 4, 4, 3, 3, 2, 4, 4, 4, 2, 6, 2, 6, 7, 4, 2, 4, 5, 4, 4, 6, 2, 3, 4, 5, 4, 4, 2, 7, 2, 4, 8, 2, 4, 6, 2, 4, 4, 6, 2, 9, 2, 4, 10, 6, 3, 6, 2, 6, 9, 4, 2, 8, 4, 4, 4, 6, 2, 7, 4, 11, 4, 4, 4, 4, 2, 5, 4, 4, 2, 6, 2, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2018

Keywords

Comments

Restricted growth sequence transform of A278222(A285330(n)).
For all i, j:
A322806(i) = A322806(j) => a(i) = a(j),
A322807(i) = A322807(j) => a(i) = a(j),
a(i) = a(j) => A322862(i) = A322862(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(moebius(n)<>0,A048675(n),A285328(n));
    A278222(n) = A046523(A005940(1+n));
    v322861 = rgs_transform(vector(up_to,n,A278222(A285330(n))));
    A322861(n) = v322861[n];

A322862 a(n) = A000120(A285330(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 3, 4, 2, 1, 2, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 4, 1, 2, 3, 1, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 4, 3, 2, 3, 1, 3, 4, 2, 1, 3, 2, 2, 2, 3, 1, 4, 2, 4, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DigitCount[#, 2, 1] &@ Which[n == 1, 0, MoebiusMu@ n != 0, Total@ Map[#2*2^(PrimePi@ #1 - 1) & @@ # &, FactorInteger[n]], True, With[{r = DivisorSum[n, EulerPhi[#] Abs@ MoebiusMu[#] &]}, SelectFirst[Range[n - 2, 2, -1], DivisorSum[#, EulerPhi[#] Abs@ MoebiusMu[#] &] == r &]]], {n, 105}] (* Michael De Vlieger, Dec 31 2018 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(moebius(n)<>0,A048675(n),A285328(n));
    A322862(n) = hammingweight(A285330(n));
    \\ Or just as:
    A322862(n) = if(issquarefree(n), omega(n), hammingweight(A285328(n)));

Formula

a(n) = A000120(A285330(n)).
If n is squarefree, a(n) = A322869(n) = A000120(A048675(n)) = A001221(n), otherwise a(n) = A000120(A285328(n)).
Previous Showing 11-15 of 15 results.