cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A286571 Compound filter (prime signature of n & n/gcd(n, sigma(n))): a(n) = P(A046523(n), A017666(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 25, 17, 21, 30, 113, 70, 51, 68, 103, 93, 72, 51, 481, 155, 148, 192, 222, 331, 126, 278, 324, 382, 159, 569, 78, 437, 591, 498, 1985, 126, 237, 786, 2521, 705, 282, 952, 375, 863, 660, 948, 243, 337, 384, 1130, 1759, 1330, 1842, 237, 678, 1433, 520, 1776, 459, 1897, 567, 1772, 2076, 1893, 636, 2713, 8065, 2421, 810, 2280, 1002, 384, 2046
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A017666(n) = (n/gcd(n, sigma(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286571(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n));
    
  • Python
    from sympy import factorint, gcd, divisor_sigma
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), n/gcd(n, divisor_sigma(n))) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286571 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A017666 n)) 2) (- (A046523 n)) (- (* 3 (A017666 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A017666(n))^2) - A046523(n) - 3*A017666(n)).

A289622 Compound filter (prime signature & Carmichael's lambda): a(n) = P(A046523(n), A002322(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 5, 14, 12, 27, 23, 44, 40, 42, 57, 90, 80, 61, 42, 187, 138, 148, 173, 117, 61, 111, 255, 324, 257, 142, 308, 148, 408, 558, 467, 773, 111, 216, 142, 856, 668, 259, 142, 375, 822, 625, 905, 222, 265, 357, 1083, 1323, 994, 477, 216, 265, 1380, 844, 306, 430, 259, 534, 1713, 2013, 1832, 601, 148, 3145, 142, 771, 2213, 363, 357
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A002322(n))^2) - A046523(n) - 3*A002322(n)).

A083262 a(n) = sigma(A046523(n)), sum of divisors of the least number with the same prime signature as n.

Original entry on oeis.org

1, 3, 3, 7, 3, 12, 3, 15, 7, 12, 3, 28, 3, 12, 12, 31, 3, 28, 3, 28, 12, 12, 3, 60, 7, 12, 15, 28, 3, 72, 3, 63, 12, 12, 12, 91, 3, 12, 12, 60, 3, 72, 3, 28, 28, 12, 3, 124, 7, 28, 12, 28, 3, 60, 12, 60, 12, 12, 3, 168, 3, 12, 28, 127, 12, 72, 3, 28, 12, 72, 3, 195, 3, 12, 28, 28, 12, 72
Offset: 1

Views

Author

Labos Elemer, May 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1]], {n, 78}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ This function from Charles R Greathouse IV, Aug 17 2011
    A083262(n) = sigma(A046523(n)); \\ Antti Karttunen, May 19 2017

Extensions

Name clarified by Antti Karttunen, May 19 2017
Previous Showing 11-13 of 13 results.