cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A286796 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 27, 40, 14, 1, 248, 419, 200, 30, 1, 2830, 5308, 3124, 700, 55, 1, 38232, 78070, 53620, 15652, 1960, 91, 1, 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1, 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1, 202601898, 495263284, 456715752, 209878440, 52619854, 7322172, 545908, 19800, 285, 1, 4342263000, 11085720018, 10921213644, 5516785032, 1579263840, 264576774, 25677652, 1372228, 36300, 385, 1
Offset: 0

Views

Author

Gheorghe Coserea, May 21 2017

Keywords

Examples

			A(x;t) = 1 + (1 + t)*x + (4 + 5*t + t^2)*x^2 + (27 + 40*t + 14*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]      [4]      [5]     [6]    [7]  [8]
[0]  1;
[1]  1;        1;
[2]  4,        5,        1;
[3]  27,       40,       14,       1;
[4]  248,      419,      200,      30,      1;
[5]  2830,     5308,     3124,     700,     55,      1;
[6]  38232,    78070,    53620,    15652,   1960,    91,     1;
[7]  593859,   1301088,  1007292,  356048,  60550,   4704,   140,   1;
[8]  10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1;
[9]  ...
		

Crossrefs

Programs

  • Mathematica
    max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n]; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t];
    Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 23 2017, adapted from PARI *)
  • PARI
    A286795_ser(N, t='t) = {
      my(x='x+O('x^N), y0=1, y1=0, n=1);
      while(n++,
        y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
        y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
    };
    A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
    concat(apply(p->Vecrev(p), Vec(A286796_ser(11))))

Formula

A(x;t) = Sum_{n>=0} P_n(t)*x^n = v/(1-x*t*v), where v(x;t) = A286795(x;t) and P_n(t) = Sum_{k=0..n} T(n,k)*t^k.
A000699(n+1)=T(n,0), A000330(n)=T(n,n-1), A286797(n)=P_n(1) and P_n(-1)=0 for n>0.
Previous Showing 11-11 of 11 results.