cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A288968 Exponents a(1), a(2), ... such that E_2, 1 - 24*q - 72*q^2 - ... (A006352) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

24, 348, 6424, 129300, 2778648, 62114524, 1428337176, 33527349924, 799482197272, 19302454317660, 470740035601176, 11575875047000596, 286650683468840472, 7140515309818664028, 178783562850377621272, 4496350112540599930692
Offset: 1

Views

Author

Seiichi Manyama, Jun 20 2017

Keywords

Crossrefs

Cf. this sequence (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), A289024 (k=10), A288990/A288989 (k=12), A289029 (k=14).
Cf. A006352 (E_2), A008683, A288877 (E_4/E_2), A289635.

Formula

a(n) = 2 + (1/(12*n)) * Sum_{d|n} A008683(n/d) * A288877(d).
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289635(d).
a(n) ~ 1 / (n * r^(2*n)), where r = A057823. - Vaclav Kotesovec, Mar 08 2018

A289328 Coefficients in expansion of E_6^(5/12).

Original entry on oeis.org

1, -210, -37800, -10300080, -3534651750, -1351633962672, -551776752641520, -235367241169341120, -103623939263346377400, -46723958347194591810690, -21464711387762586693907248, -10009787904868201520473221840
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), this sequence (k=5), A289293 (k=6).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(5*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(17/12), where c = -5 * Gamma(1/12) * Gamma(1/4)^(20/3) / (128 * 2^(11/12) * 3^(2/3) * Pi^5 * Gamma(1/3)^2) = -0.2792181117471536554156263079143941137076647484619917046386429000631... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289345 Coefficients in expansion of E_6^(7/12).

Original entry on oeis.org

1, -294, -40572, -9456216, -3013531458, -1095736644072, -430427492908056, -177966281438573376, -76323096421188881292, -33643171872410204427918, -15150435131179232328586968, -6940567145625149028384495432
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), this sequence (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(7/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(7*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(19/12), where c = -7 * Gamma(1/12) * Gamma(1/4)^(22/3) / (1024 * 6^(1/12) * Pi^7) = -0.2836006135316422535659652380776952016594933981... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289346 Coefficients in expansion of E_6^(2/3).

Original entry on oeis.org

1, -336, -39312, -8266944, -2529479568, -895678457184, -344891780549568, -140330667583849344, -59379605532142099344, -25873741825665005773200, -11534062764689844375098592, -5236325710480558290644292672
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), this sequence (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(2/3), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(2*A288851(n)/3).
a(n) ~ c * exp(2*Pi*n) / n^(5/3), where c = -3^(1/3) * Gamma(1/4)^(32/3) / (128 * 2^(2/3) * Pi^8 * Gamma(1/3)) = -0.258650618394676269905172499217587002338... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289347 Coefficients in expansion of E_6^(3/4).

Original entry on oeis.org

1, -378, -36288, -6664896, -1950813774, -672039262944, -253536117254784, -101485291597998336, -42360328701954544176, -18242860786892766495450, -8049299329628263783504512, -3621056234759774113947852096
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), this sequence (k=9), A289348 (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(3/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(3*A288851(n)/4).
a(n) ~ c * exp(2*Pi*n) / n^(7/4), where c = -3^(5/2) * Gamma(1/4)^11 / (2048 * 2^(3/4) * Pi^9) = -0.21604472104032272720247495618663130188448925463945370445... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289348 Coefficients in expansion of E_6^(5/6).

Original entry on oeis.org

1, -420, -31500, -4724160, -1314429900, -440028142344, -162555920654400, -63990327056960640, -26341675849615282380, -11210298679649742846180, -4895195936831699458605912, -2181913188022929464292248640
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), this sequence (k=10), A289349 (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(5/6), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(5*A288851(n)/6).
a(n) ~ c * exp(2*Pi*n) / n^(11/6), where c = -5 * 3^(1/6) * Gamma(1/4)^(40/3) / (2048*sqrt(2) * Pi^(19/2) * Gamma(1/3)^2) = -0.1571123439957640423587958439875289712533650298096956968521099309872... - Vaclav Kotesovec, Jul 08 2017, updated Mar 05 2018

A289349 Coefficients in expansion of E_6^(11/12).

Original entry on oeis.org

1, -462, -24948, -2518824, -654112074, -212483064024, -76819071738024, -29728723632736128, -12066341379893331300, -5073593348593538950566, -2192302482140061697816872, -968086916154014421082349304, -435126775136273350146250044888
Offset: 0

Views

Author

Seiichi Manyama, Jul 03 2017

Keywords

Comments

In general, for 0 < m < 1, the expansion of (E_6)^m is asymptotic to -m * Gamma(1/4)^(16*m) * 3^(2*m) * exp(2*Pi*n) / (2^(13*m) * Pi^(12*m) * Gamma(1-m) * n^(1+m)). - Vaclav Kotesovec, Mar 05 2018

Crossrefs

E_6^(k/12): A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), this sequence (k=11).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(11/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(11*A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(23/12), where c = -11 * 2^(5/12) * 3^(5/6) * Pi^(11/3) / (128 * Gamma(1/12) * Gamma(3/4)^(44/3)) = -0.08406022472181281739983743854923746657261382508944840919197295490535... - Vaclav Kotesovec, Jul 08 2017

A289029 Exponents a(1), a(2), ... such that E_14, 1 - 24*q - 196632*q^2 + ... (A058550) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

24, 196908, 42987544, 21974456220, 8544538312728, 3980088408377644, 1793770730037338136, 847156322106368439324, 401870774532436947447832, 193962999708079363021283628, 94363580764388112933729226776, 46332621615483591171320408201116
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2017

Keywords

Comments

This sequence is related to the identity: E_4^2*E_6 = E_4*E_10 = E_6*E_8 = E_14.

Crossrefs

Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), A289024 (k=10), A288990/A288989 (k=12), this sequence (k=14).
Cf. A008683, A288261 (E_6/E_4), A288840 (E_8/E_6), A289640.

Formula

a(n) = 2 * A110163(n) + A288851(n) = A110163(n) + A289024(n) = A288851(n) + A288471(n) = 28 + (1/n) * (Sum_{d|n} A008683(n/d) * (2/3 * A288261(d) + 1/2 * A288840(d))).
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289640(d). - Seiichi Manyama, Jul 09 2017
a(n) ~ exp(2*Pi*n) / n. - Vaclav Kotesovec, Mar 08 2018

A289024 Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

264, 170148, 47083784, 21265517460, 8675419078920, 3954919534878884, 1798749087973466376, 846151096977050604564, 402076970410851910136072, 193920175271783317402925220, 94372564731126150526919627016, 46330721199213296384252696382356
Offset: 1

Views

Author

Seiichi Manyama, Jun 22 2017

Keywords

Comments

This sequence is related to the identity: E_4*E_6 = E_10.

Crossrefs

Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), this sequence (k=10), A288990/A288989 (k=12), A289029 (k=14).
Cf. A008683, A288261 (E_6/E_4), A288840 (E_8/E_6), A289639.

Formula

a(n) = A110163(n) + A288851(n) = 20 + (1/n) * (Sum_{d|n} A008683(n/d) * (1/3 * A288261(d) + 1/2 * A288840(d))).
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289639(d). - Seiichi Manyama, Jul 09 2017
a(n) ~ exp(2*Pi*n) / n. - Vaclav Kotesovec, Mar 08 2018

A288471 Exponents a(1), a(2), ... such that E_8, 1 + 480*q + 61920*q^2 + ... (A008410) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

-480, 53520, -8192480, 1417877520, -261761532384, 50337746997520, -9956715872256480, 2010450258635669520, -412391756829925376480, 85648872592091236716816, -17967933476075186380800480, 3800832540589574135423637520
Offset: 1

Views

Author

Seiichi Manyama, Jun 21 2017

Keywords

Crossrefs

Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), this sequence (k=8), A289024 (k=10), A288990/A288989 (k=12), A289029 (k=14).
Cf. A008410 (E_8), A008683, A288261 (E_10/E_8), A289638.

Formula

a(n) = 16 + (2/(3*n)) * Sum_{d|n} A008683(n/d) * A288261(d).
a(n) = 2 * A110163(n) = 2 * A013953(n^2). - Seiichi Manyama, Jun 22 2017
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289638(d). - Seiichi Manyama, Jul 09 2017
a(n) ~ 2 * (-1)^n * exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 08 2018
Previous Showing 11-20 of 25 results. Next