A339004
Numbers of the form prime(x) * prime(y) where x and y are distinct and both even.
Original entry on oeis.org
21, 39, 57, 87, 91, 111, 129, 133, 159, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817, 843, 879, 917
Offset: 1
The sequence of terms together with their prime indices begins:
21: {2,4} 267: {2,24} 543: {2,42}
39: {2,6} 301: {4,14} 551: {8,10}
57: {2,8} 303: {2,26} 553: {4,22}
87: {2,10} 321: {2,28} 559: {6,14}
91: {4,6} 339: {2,30} 579: {2,44}
111: {2,12} 371: {4,16} 597: {2,46}
129: {2,14} 377: {6,10} 623: {4,24}
133: {4,8} 393: {2,32} 669: {2,48}
159: {2,16} 417: {2,34} 687: {2,50}
183: {2,18} 427: {4,18} 689: {6,16}
203: {4,10} 453: {2,36} 703: {8,12}
213: {2,20} 481: {6,12} 707: {4,26}
237: {2,22} 489: {2,38} 717: {2,52}
247: {6,8} 497: {4,20} 749: {4,28}
259: {4,12} 519: {2,40} 753: {2,54}
A338911 is the not necessarily squarefree version.
A339003 is the odd instead of even version, with not necessarily squarefree version
A338910.
A300912 lists products of pairs of primes with relatively prime indices.
A318990 lists products of pairs of primes with divisible indices.
A320656 counts factorizations into squarefree semiprimes.
A338904 groups semiprimes by weight.
Cf.
A000040,
A001221,
A001222,
A056239,
A112798,
A166237,
A195017,
A320911,
A338901,
A338903,
A339002.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@(1+ PrimePi/@First/@FactorInteger[#])]&]
-
from math import isqrt
from sympy import primepi, primerange
def A339004(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1^1)
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A338908
Squarefree semiprimes whose prime indices sum to an even number.
Original entry on oeis.org
10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1
The sequence of terms together with their prime indices begins:
10: {1,3} 115: {3,9} 213: {2,20}
21: {2,4} 118: {1,17} 218: {1,29}
22: {1,5} 129: {2,14} 235: {3,15}
34: {1,7} 133: {4,8} 237: {2,22}
39: {2,6} 134: {1,19} 247: {6,8}
46: {1,9} 146: {1,21} 253: {5,9}
55: {3,5} 155: {3,11} 254: {1,31}
57: {2,8} 159: {2,16} 259: {4,12}
62: {1,11} 166: {1,23} 267: {2,24}
82: {1,13} 183: {2,18} 274: {1,33}
85: {3,7} 187: {5,7} 295: {3,17}
87: {2,10} 194: {1,25} 298: {1,35}
91: {4,6} 203: {4,10} 301: {4,14}
94: {1,15} 205: {3,13} 303: {2,26}
111: {2,12} 206: {1,27} 314: {1,37}
A031215 looks at primes instead of semiprimes.
A300061 and
A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339116 groups squarefree semiprimes by greater prime factor.
Cf.
A000040,
A001221,
A001222,
A087112,
A098350,
A112798,
A168472,
A338901,
A338904,
A339004,
A339005.
A338909
Numbers of the form prime(x) * prime(y) where x and y have a common divisor > 1.
Original entry on oeis.org
9, 21, 25, 39, 49, 57, 65, 87, 91, 111, 115, 121, 129, 133, 159, 169, 183, 185, 203, 213, 235, 237, 247, 259, 267, 289, 299, 301, 303, 305, 319, 321, 339, 361, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 529, 543, 551, 553, 559, 565
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 169: {6,6} 319: {5,10}
21: {2,4} 183: {2,18} 321: {2,28}
25: {3,3} 185: {3,12} 339: {2,30}
39: {2,6} 203: {4,10} 361: {8,8}
49: {4,4} 213: {2,20} 365: {3,21}
57: {2,8} 235: {3,15} 371: {4,16}
65: {3,6} 237: {2,22} 377: {6,10}
87: {2,10} 247: {6,8} 393: {2,32}
91: {4,6} 259: {4,12} 417: {2,34}
111: {2,12} 267: {2,24} 427: {4,18}
115: {3,9} 289: {7,7} 445: {3,24}
121: {5,5} 299: {6,9} 453: {2,36}
129: {2,14} 301: {4,14} 481: {6,12}
133: {4,8} 303: {2,26} 489: {2,38}
159: {2,16} 305: {3,18} 497: {4,20}
A082023 counts partitions with these as Heinz numbers, complement
A023022.
A001221 counts distinct prime indices.
A004526 counts 2-part partitions, with strict case
A140106 (shifted left).
A318990 lists semiprimes with divisible indices.
A320655 counts factorizations into semiprimes.
A338910 lists semiprimes with odd indices.
A338911 lists semiprimes with even indices.
Cf.
A005117,
A037143,
A055684,
A056239,
A065516,
A112798,
A115392,
A128301,
A289182,
A338900,
A338904.
Comments