A339313
Smallest prime numbers characterized by a convergence speed of n, assuming a(1) = 2 (since 2^2 <> 2^2^2 (mod 10) and 2^2^2 == 2^2^2^2 (mod 10)).
Original entry on oeis.org
2, 5, 193, 1249, 22943, 2218751, 4218751, 74218751, 574218751, 30000000001, 281907922943, 581907922943, 6581907922943, 123418092077057, 480163574218751, 19523418092077057, 40476581907922943, 2152996418333704193, 23640476581907922943, 3640476581907922943
Offset: 1
For n = 3, a(3) = 193, since 193 is the smallest prime number which is characterized by a convergence speed of 3.
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
A378421
Positive integers in A376446 sorted according to their appearance in that sequence.
Original entry on oeis.org
8, 64, 2486, 5, 4268, 8426, 2, 4, 4862, 46, 82, 6248, 6842, 8624, 2684, 28, 6, 9, 7139, 3179, 19, 1397, 1793, 91, 3971, 7931, 9713, 9317
Offset: 2
a(2) = 64 since A376446(2) = 64 (which is different from A376446(1) = 8).
- Marco Ripà, Graham's number stable digits: an exact solution, arXiv:2411.00015 [math.GM], 2024.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024. See pp. 9, 14, 27.
- Wikipedia, Graham's Number.
- Wikipedia, Tetration.
Cf.
A000007,
A018247,
A018248,
A063006,
A091661,
A091663,
A091664,
A120817,
A120818,
A290372,
A290373,
A290374,
A290375.
A380031
Smallest integer of d digits, greater than 1 and not ending in 0, whose constant congruence speed is not yet constant at height d + 2.
Original entry on oeis.org
5, 807, 81666295807, 81907922943, 161423787862411847003581666295807, 115161423787862411847003581666295807, 45115161423787862411847003581666295807, 44317662666830362972182803640476581907922943, 776138023544317662666830362972182803640476581907922943
Offset: 1
a(2) = 807 since the corresponding 10-adic solution of y^5 = y is ...61423787862411847003581666295807 where the rightmost digit 5 appears to the left side of a(2) itself, while no smaller numbers with the same feature are achievable by cutting the 10-adic integer ...30362972182803640476581907922943 (also one of the 15 solutions of the fundamental 10-adic equation y^5 = y) in correspondence of its rightmost digit 5.
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Cf.
A068407,
A290372,
A290373,
A290374,
A290375,
A317905,
A370211,
A370775,
A371129,
A371671,
A372490,
A373387,
A379906.
Comments