A290901
p-INVERT of the positive integers, where p(S) = 1 - S^3 - S^4.
Original entry on oeis.org
0, 0, 1, 7, 29, 93, 260, 689, 1845, 5150, 14897, 43663, 127451, 368383, 1056682, 3022366, 8651672, 24818978, 71319058, 205070493, 589550733, 1694075057, 4866102091, 13975547842, 40139685023, 115298782211, 331216158188, 951506566087, 2733431466995
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 57, -71, 57, -28, 8, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290901 *)
-
concat(vector(2), Vec(x^2*(1 - x + x^2) / (1 - 8*x + 28*x^2 - 57*x^3 + 71*x^4 - 57*x^5 + 28*x^6 - 8*x^7 + x^8) + O(x^40))) \\ Colin Barker, Aug 18 2017
A290908
p-INVERT of the positive integers, where p(S) = 1 - 4*S^2.
Original entry on oeis.org
0, 4, 16, 56, 208, 780, 2912, 10864, 40544, 151316, 564720, 2107560, 7865520, 29354524, 109552576, 408855776, 1525870528, 5694626340, 21252634832, 79315912984, 296011017104, 1104728155436, 4122901604640, 15386878263120, 57424611447840, 214311567528244
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 4 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290908 *)
u/4 (* A099486 *)
A290919
p-INVERT of the positive integers, where p(S) = (1 - S)^4.
Original entry on oeis.org
4, 18, 72, 271, 976, 3398, 11516, 38179, 124272, 398248, 1259240, 3935420, 12173440, 37314700, 113452128, 342426657, 1026711724, 3059968146, 9069834488, 26748151221, 78518859336, 229505772002, 668173273988, 1938126895864, 5602502738380, 16143099833606
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -58, 144, -195, 144, -58, 12, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s)^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290919 *)
A290920
p-INVERT of the positive integers, where p(S) = (1 - S)^5.
Original entry on oeis.org
5, 25, 110, 450, 1746, 6505, 23465, 82435, 283270, 955258, 3169520, 10368490, 33497790, 107028120, 338582738, 1061557195, 3301399385, 10191612315, 31250047480, 95226980516, 288523285450, 869559080385, 2607834545025, 7785230674580, 23142279699355
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15, -95, 330, -685, 873, -685, 330, -95, 15, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s)^5;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290920 *)
-
Vec((5 - 50*x + 210*x^2 - 475*x^3 + 621*x^4 - 475*x^5 + 210*x^6 - 50*x^7 + 5*x^8) / (1 - 3*x + x^2)^5 + O(x^30)) \\ Colin Barker, Aug 24 2017
A290921
p-INVERT of the positive integers, where p(S) = (1 - S)^6.
Original entry on oeis.org
6, 33, 158, 696, 2886, 11425, 43590, 161355, 582340, 2056818, 7130388, 24319054, 81757104, 271353288, 890327048, 2891047695, 9299683770, 29658374355, 93843661530, 294791108106, 919849034686, 2852495485953, 8794877092878, 26971256457596, 82298545175130
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18, -141, 630, -1770, 3258, -3989, 3258, -1770, 630, -141, 18, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s)^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290921 *)
-
Vec((2 - x)*(1 - 2*x)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4)*(3 - 15*x + 25*x^2 - 15*x^3 + 3*x^4) / (1 - 3*x + x^2)^6 + O(x^30)) \\ Colin Barker, Aug 24 2017
A290922
p-INVERT of the positive integers, where p(S) = 1 - S - 2*S^2.
Original entry on oeis.org
1, 5, 20, 75, 279, 1040, 3881, 14485, 54060, 201755, 752959, 2810080, 10487361, 39139365, 146070100, 545141035, 2034494039, 7592835120, 28336846441, 105754550645, 394681356140, 1472970873915, 5497202139519, 20515837684160, 76566148597121, 285748756704325
Offset: 0
-
I:=[1,5,20,75]; [n le 4 select I[n] else 5*Self(n-1)- 6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 19 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290922 *)
LinearRecurrence[{5, -6, 5, -1}, {1, 5, 20, 75}, 30] (* Vincenzo Librandi, Aug 19 2017 *)
A290925
p-INVERT of the positive integers, where p(S) = 1 - 3*S - 2*S^2.
Original entry on oeis.org
3, 17, 92, 495, 2661, 14304, 76891, 413329, 2221860, 11943663, 64203453, 345127232, 1855239875, 9972887313, 53609499612, 288179176047, 1549114207525, 8327301302176, 44763611772699, 240627889663761, 1293501104827044, 6953246818258415, 37377348295412093
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 3 s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290925 *)
A290926
p-INVERT of the positive integers, where p(S) = (1 - S^2)^2.
Original entry on oeis.org
0, 2, 8, 23, 64, 182, 520, 1475, 4152, 11624, 32408, 90028, 249272, 688140, 1894600, 5203665, 14260968, 39004962, 106486512, 290226621, 789776888, 2146082610, 5823823120, 15784464728, 42731452816, 115556460982, 312175750152, 842537682283, 2271900155120
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -26, 48, -59, 48, -26, 8, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s^2)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290926 *)
A290927
p-INVERT of the positive integers, where p(S) = (1 - S^2)^3.
Original entry on oeis.org
0, 3, 12, 36, 108, 331, 1008, 3027, 8992, 26502, 77592, 225806, 653544, 1882224, 5396776, 15411399, 43847688, 124331457, 351448620, 990586686, 2784612380, 7808372811, 21845061504, 60983031772, 169897677504, 472435652577, 1311365875700, 3633925019190
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -63, 196, -414, 636, -731, 636, -414, 196, -63, 12, -1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s^2)^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290927 *)
-
concat(0, Vec(x*(3 - 24*x + 81*x^2 - 156*x^3 + 193*x^4 - 156*x^5 + 81*x^6 - 24*x^7 + 3*x^8) / ((1 - 3*x + x^2)^3*(1 - x + x^2)^3) + O(x^30))) \\ Colin Barker, Aug 19 2017
A290928
p-INVERT of the positive integers, where p(S) = (1 - S^3)^2.
Original entry on oeis.org
0, 0, 2, 12, 42, 115, 288, 738, 2020, 5751, 16362, 45697, 125538, 342318, 933050, 2547630, 6960042, 18990309, 51699042, 140439411, 380871538, 1031705466, 2792009100, 7548723827, 20389716864, 55020917232, 148334534420, 399562167420, 1075432476492
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,222,-507,822,-965,822,-507,222,-66,12,-1)
-
z = 60; s = x/(1 - x)^2; p = (1 - s^3)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290928 *)
LinearRecurrence[{12, -66, 222, -507, 822, -965, 822, -507, 222, -66, 12, -1}, {0, 0, 2, 12, 42, 115, 288, 738, 2020, 5751, 16362, 45697}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
-
concat(vector(2), Vec(x^2*(2 - 12*x + 30*x^2 - 41*x^3 + 30*x^4 - 12*x^5 + 2*x^6) / ((1 - 3*x + x^2)^2*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)^2) + O(x^30))) \\ Colin Barker, Aug 19 2017
Comments