cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A305572 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} a(n/d)^d.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 2, 0, 10, 4, 2, 32, 2, 4, 42, 0, 2, 228, 2, 32, 138, 4, 2, 1536, 34, 4, 1514, 32, 2, 3940, 2, 0, 2058, 4, 162, 102944, 2, 4, 8202, 1536, 2, 51940, 2, 32, 207370, 4, 2, 3538944, 130, 3204, 131082, 32, 2, 15668836, 2082, 1536, 524298, 4, 2, 54327840
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[n/y]^y,{y,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305572(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,A305572(n/d)^d))); \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = Sum_t (-1)^(n-k) where the sum is over all same-trees of weight n (see A281145 for definition) and k is the number of leaves.

A305610 a(n) = (-1)^(n-1) + Sum_{d|n, d>1} binomial(a(n/d) + d - 1, d).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 2, 0, 6, 3, 2, 11, 2, 3, 12, 0, 2, 38, 2, 11, 14, 3, 2, 90, 8, 3, 68, 11, 2, 127, 2, 0, 18, 3, 16, 1194, 2, 3, 20, 90, 2, 173, 2, 11, 644, 3, 2, 5158, 10, 68, 24, 11, 2, 12762, 20, 90, 26, 3, 2, 12910, 2, 3, 1386, 0, 22, 289, 2, 11, 30, 219, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Binomial[a[n/d]+d-1,d],{d,Divisors[n]//Rest}];
    Array[a,40]
  • PARI
    A305610(n) = ((-1)^(n-1) + sumdiv(n,d,if(d==1,0,binomial(A305610(n/d)+d-1, d)))); \\ Antti Karttunen, Dec 05 2021
Previous Showing 11-12 of 12 results.