cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A291735 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^3.

Original entry on oeis.org

1, 1, 3, 5, 10, 19, 35, 67, 124, 234, 441, 827, 1558, 2927, 5503, 10349, 19453, 36580, 68774, 129304, 243119, 457093, 859415, 1615837, 3038024, 5711986, 10739431, 20191855, 37963921, 71378219, 134202491, 252322113, 474405911, 891958973, 1677025407
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291735 *)
    LinearRecurrence[{1,0,2,0,3,0,3,0,1},{1,1,3,5,10,19,35,67,124},40] (* Harvey P. Dale, Aug 25 2024 *)

Formula

G.f.: -(((1 + x^2) (1 + x^2 + 2 x^4 + x^6))/(-1 + x + 2 x^3 + 3 x^5 + 3 x^7 + x^9)).
a(n) = a(n-1) + 2*a(n-3) + 3*a(n-5) + 3*a(n-7) + a(n-9) for n >= 10.

A291736 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S^2 - S^3.

Original entry on oeis.org

0, 1, 1, 3, 5, 7, 16, 22, 47, 73, 137, 235, 410, 734, 1258, 2255, 3895, 6904, 12056, 21184, 37210, 65172, 114612, 200765, 352779, 618598, 1085950, 1905601, 3343713, 5868895, 10297254, 18073207, 31712887, 55655620, 97666401, 171392667, 300776956, 527817651
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291736 *)

Formula

G.f.: -((x (1 + x^2)^2 (1 + x + x^3))/((-1 + 2 x - x^2 + x^3) (1 + 2 x + 2 x^2 + 2 x^3 + 2 x^4 + x^5 + x^6))).
a(n) = a(n-2) + a(n-3) + 2*a(n-4) + 3*a(n-5) + a(n-6) + 3*a(n-7) + a(n-9) for n >= 10.

A291737 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 2, 5, 11, 25, 54, 121, 267, 591, 1310, 2899, 6422, 14218, 31486, 69722, 154389, 341881, 757050, 1676405, 3712200, 8220236, 18202762, 40307892, 89257156, 197649588, 437672056, 969173912, 2146123007, 4752340053, 10523504828, 23303078705, 51601960101
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291737 *)

Formula

G.f.: -(((1 + x^2) (1 - x + x^2) (1 + 2 x + 2 x^2 + x^3 + x^4))/(-1 + x + x^2 + 2 x^3 + 2 x^4 + 3 x^5 + x^6 + 3 x^7 + x^9)).
a(n) = a(n-1) + a(n-2) + 2*a(n-3) + 2*a(n-4) + 3*a(n-5) + a(n-6) + 3*a(n-7) + a(n-9) for n >= 10.

A291738 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S - S^4.

Original entry on oeis.org

1, 1, 2, 4, 6, 13, 23, 43, 76, 138, 244, 444, 795, 1444, 2600, 4705, 8474, 15307, 27583, 49797, 89800, 162088, 292388, 527663, 951922, 1717692, 3098937, 5591589, 10088361, 18202665, 32841990, 59256835, 106914493, 192904396, 348050363, 627980316, 1133045001
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291738 *)

Formula

G.f.: -(((1 + x^2) (1 + x + x^2) (1 + x + x^3) (1 - 2 x + 2 x^2 - x^3 + x^4))/(-1 + x + x^3 + x^4 + 4 x^6 + 6 x^8 + 4 x^10 + x^12)).
a(n) = a(n-1) + a(n-3) + a(n-4) + 4* a(n-6) + 6*a(n-8) + 4*a(n-10) + a(n-12) for n >= 13.

A291739 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = 1 - S^3 - S^6.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 3, 12, 4, 30, 27, 45, 108, 90, 260, 342, 498, 1115, 1218, 2709, 3913, 5949, 11469, 15262, 28461, 44556, 68028, 123243, 178650, 311337, 498114, 777996, 1340603, 2052765, 3435906, 5569902, 8800392, 14783823, 23242761, 38249550, 62156709
Offset: 0

Views

Author

Clark Kimberling, Sep 11 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = 1 - s^3 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291739 *)

Formula

G.f.: -((x^2 (1 + x^2)^3 (1 + x + x^2) (1 + x + x^3) (1 - 2 x + 2 x^2 - x^3 + x^4))/(-1 + x^3 + 3 x^5 + x^6 + 3 x^7 + 6 x^8 + x^9 + 15 x^10 + 20 x^12 + 15 x^14 + 6 x^16 + x^18)).
a(n) = a(n-3) + 3*a(n-5) + a(n-6) + 3*a(n-7) + 6*a(n-8) + a(n-9) + 15*a(n-10) + 20 *a(n-12) + 15*a(n-14) + 6*a(n-16) + a(n-18) for n >= 19.

A291740 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - S)(1 - S^2).

Original entry on oeis.org

1, 2, 3, 7, 9, 18, 25, 47, 65, 118, 165, 290, 408, 702, 992, 1677, 2379, 3966, 5643, 9300, 13266, 21654, 30954, 50116, 71770, 115388, 165504, 264475, 379863, 603792, 868267, 1373621, 1977413, 3115222, 4488843, 7045205, 10160427, 15892794, 22937999, 35769390
Offset: 0

Views

Author

Clark Kimberling, Sep 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = (1 - s) (1 - s^2);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291740 *)
  • PARI
    x='x+O('x^99); Vec(((1+x^2)*(1+x-x^2+x^3-2*x^4-x^6))/((-1+x+x^3)^2*(1+x+x^3))) \\ Altug Alkan, Oct 04 2017

Formula

G.f.: -(((1 + x^2) (-1 - x + x^2 - x^3 + 2 x^4 + x^6))/((-1 + x + x^3)^2 (1 + x + x^3))).
a(n) = a(n-1) + a(n-2) + 2*a(n-4) - 3*a(n-5) + a(n-6) - 3*a(n-7) - a(n-9) for n >= 10.

A291741 p-INVERT of (1,0,1,0,0,0,0,...), where p(S) = (1 - S)(1 + S^2).

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 5, 7, 11, 12, 19, 30, 42, 68, 98, 137, 205, 292, 429, 644, 936, 1380, 2024, 2936, 4316, 6324, 9260, 13625, 19949, 29216, 42841, 62701, 91917, 134784, 197485, 289547, 424331, 621708, 911255, 1335378, 1957086, 2868620, 4203998, 6161329
Offset: 0

Views

Author

Clark Kimberling, Sep 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x + x^3; p = (1 - s) (1 + s^2);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A154272 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291741 *)

Formula

G.f.: -(((1 + x^2) (1 + x + x^2) (1 - 2 x + 2 x^2 - x^3 + x^4))/((-1 + x + x^3) (1 + x^2 + 2 x^4 + x^6))).
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) + 3*a(n-5) - a(n-6) + 3*a(n-7) + a(n-9) for n >= 10.

A289920 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 42, 80, 151, 287, 544, 1031, 1956, 3708, 7031, 13333, 25280, 47936, 90895, 172350, 326806, 619677, 1175008, 2228011, 4224672, 8010672, 15189552, 28801880, 54613096, 103555397, 196358029, 372327066, 705993241, 1338679088, 2538355336
Offset: 0

Views

Author

Clark Kimberling, Sep 14 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A289920 *)

Formula

G.f.: -((-1 - x + x^3)/(1 - x - x^2 - 2 x^3 + x^4 + x^6)).
a(n) = a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - a(n-6) for n >= 7.

A292321 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S^2 - S^3.

Original entry on oeis.org

0, 1, 1, 1, 4, 5, 7, 17, 23, 38, 75, 109, 190, 339, 524, 917, 1563, 2519, 4360, 7305, 12056, 20621, 34407, 57452, 97423, 162672, 272961, 460454, 770281, 1294575, 2177777, 3649129, 6134192, 10306017, 17287962, 29054244, 48790024, 81894794, 137592982
Offset: 0

Views

Author

Clark Kimberling, Sep 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = 1 - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292321 *)

Formula

G.f.: (x (-1 - x + x^3))/(-1 + x^2 + 4 x^3 - x^5 - 3 x^6 + x^9).
a(n) = a(n-2) + 4*a(n-3) - a(n-5) - 3*a(n-6) + a(n-9) for n >= 10.

A292323 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = (1 - S)(1 + S^2).

Original entry on oeis.org

1, 0, 0, 2, 1, 0, 5, 6, 1, 11, 23, 10, 22, 71, 57, 50, 191, 243, 164, 474, 860, 676, 1175, 2674, 2758, 3225, 7626, 10256, 10313, 20882, 34642, 36384, 57921, 108270, 130025, 170606, 321415, 448093, 540825, 934958, 1468860, 1798559, 2750605, 4605556, 6042649
Offset: 0

Views

Author

Clark Kimberling, Sep 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291728 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x - x^3); p = (1 - s)(1 + s^2);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292323 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2-2*x^3+x^4+x^6)/((1-x-x^3)*(1+x^2-2*x^3+x^6))) \\ Altug Alkan, Oct 05 2017

Formula

G.f.: -((1 - x + x^2 - 2 x^3 + x^4 + x^6)/((-1 + x + x^3) (1 + x^2 - 2 x^3 + x^6))).
a(n) = a(n-1) - a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) + a(n-9) for n >= 10.
Previous Showing 21-30 of 30 results.