cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A363118 Decimal expansion of Product_{k>=1} (1 - exp(-9*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 4, 7, 4, 4, 5, 1, 4, 8, 2, 3, 9, 9, 0, 7, 8, 9, 4, 3, 2, 3, 3, 3, 9, 4, 9, 2, 8, 7, 9, 7, 1, 6, 4, 4, 0, 0, 5, 2, 7, 5, 1, 3, 4, 3, 8, 8, 1, 9, 8, 7, 3, 9, 1, 8, 2, 6, 0, 6, 6, 0, 2, 4, 0, 5, 6, 1, 9, 2, 1, 1, 3, 2, 7, 4, 3, 6, 9, 7, 0, 9, 0, 8, 3, 8, 4, 0, 0, 8, 2, 7, 2, 0, 3, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999474451482399078943233394928797164400527513438819873918260...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(3*Pi/8) * Gamma[1/4] * ((3*(6 + 7*Sqrt[3] + 3*Sqrt[14*Sqrt[3] - 15]))^(1/3) - 3)^(1/3) / (3 * 2^(7/8) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-9*Pi)], 10, 120][[1]]

Formula

Equals exp(3*Pi/8) * Gamma(1/4) * ((3*(6 + 7*sqrt(3) + 3*sqrt(14*sqrt(3) - 15)))^(1/3) - 3)^(1/3) / (3 * 2^(7/8) * Pi^(3/4)).

A363119 Decimal expansion of Product_{k>=1} (1 - exp(-14*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 0, 7, 9, 8, 9, 3, 0, 4, 9, 2, 0, 1, 8, 8, 7, 7, 3, 5, 7, 8, 2, 1, 2, 4, 8, 3, 6, 1, 1, 1, 5, 7, 9, 6, 8, 4, 9, 9, 8, 0, 3, 8, 4, 1, 1, 0, 8, 1, 1, 1, 3, 1, 5, 0, 8, 1, 3, 3, 4, 4, 1, 9, 1, 3, 7, 5, 6, 3, 4, 7, 6, 7, 2, 4, 9, 8, 5, 6, 5, 1, 3, 8, 9, 7, 0, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999999999920798930492018877357821248361115796849980384110811...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(7*Pi/12) * Gamma[1/4] * Sqrt[Sqrt[5 - Sqrt[7]] - Sqrt[3*Sqrt[7] - 7]] / (2^(13/8) * 7^(7/16) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-14*Pi)], 10, 120][[1]]

Formula

Equals exp(7*Pi/12) * Gamma(1/4) * sqrt(sqrt(5 - sqrt(7)) - sqrt(3*sqrt(7) - 7)) / (2^(13/8) * 7^(7/16) * Pi^(3/4)).

A363120 Decimal expansion of Product_{k>=1} (1 - exp(-18*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 2, 3, 7, 9, 8, 7, 5, 5, 6, 4, 7, 7, 6, 4, 6, 8, 4, 5, 1, 2, 4, 2, 7, 2, 0, 4, 4, 4, 8, 2, 4, 4, 3, 6, 6, 1, 8, 8, 1, 9, 7, 0, 8, 7, 1, 6, 5, 9, 0, 2, 5, 6, 0, 8, 6, 2, 5, 8, 9, 3, 9, 4, 7, 0, 4, 7, 9, 0, 6, 5, 8, 4, 0, 2, 2, 2, 1, 2, 8, 2, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999999999999999723798755647764684512427204448244366188197087...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-18*Pi)], 10, 120][[1]]
    RealDigits[E^(3*Pi/4) * Gamma[1/4] * (Sqrt[6]*(2 + Sqrt[3])^(1/6) - 3)^(1/3) / (6*Pi^(3/4)), 10, 120][[1]]

Formula

Equals exp(3*Pi/4) * Gamma(1/4) * (sqrt(6)*(2 + sqrt(3))^(1/6) - 3)^(1/3) / (6*Pi^(3/4)).

A363081 Decimal expansion of Product_{k>=1} (1 - exp(-11*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 1, 8, 5, 6, 8, 2, 4, 0, 6, 4, 6, 7, 6, 6, 7, 6, 8, 5, 3, 2, 4, 8, 9, 0, 1, 8, 6, 4, 9, 8, 5, 2, 3, 2, 4, 6, 5, 3, 1, 7, 4, 8, 5, 0, 1, 4, 4, 0, 7, 2, 2, 3, 2, 0, 8, 7, 3, 1, 8, 2, 0, 4, 7, 2, 7, 1, 7, 8, 5, 7, 6, 2, 3, 0, 8, 1, 6, 0, 2, 5, 5, 8, 6, 2, 2, 6, 0, 1, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2023

Keywords

Examples

			0.9999999999999990185682406467667685324890186498523246531748501440722320873182...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-11*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-22*Pi)]^(5/2) / QPochhammer[E^(-44*Pi)] / EllipticTheta[3, 0, Exp[-11*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(11*Pi/24) * Gamma[1/4] * (((-3 + Sqrt[11])^(1/4) * Sqrt[((2*(47 - 27*Sqrt[3])^(1/6) + (47 + 27*Sqrt[3])^(1/6)* Sqrt[7 + Sqrt[33]]) * (2 + ((11 + 3*Sqrt[11]) * (4 - 3*Sqrt[3] + 3*Sqrt[11]))^(1/3) + (143 + 33*Sqrt[3] + 45*Sqrt[11] + 9*Sqrt[33])^(1/3))) / (2*(47 - 27*Sqrt[3])^(1/6) * (4 + 3*Sqrt[3] + Sqrt[11]) + (47 + 27*Sqrt[3])^(1/6) * (4 - 3*Sqrt[3] + Sqrt[11]) * Sqrt[7 + Sqrt[33]])]) / (6^(7/8)*(-(11/(-4*22^(1/3) + (1490 + 837*Sqrt[3] - 351*Sqrt[11] - 306*Sqrt[33])^(1/3) + (1490 - 837*Sqrt[3] - 351*Sqrt[11] + 306*Sqrt[33])^(1/3))))^(3/8) * ((1/34012224)*(2 + (11 + 3*Sqrt[11])^(1/3) * ((4 - 3*Sqrt[3] + 3*Sqrt[11])^(1/3) + (4 + 3*Sqrt[3] + 3*Sqrt[11])^(1/3)))^12 - Sqrt[-1 + (2 + (11 + 3*Sqrt[11])^(1/3) * ((4 - 3*Sqrt[3] + 3*Sqrt[11])^(1/3) + (4 + 3*Sqrt[3] + 3*Sqrt[11])^(1/3)))^24 / 1156831381426176])^(1/8))/Pi^(3/4)), 10, 120][[1]]
    RealDigits[E^(11*Pi/24) * Gamma[1/4] * Root[-387420489 + 1578379770*#1^2 - 1299078*#1^6 + 594*#1^10 + 11*#1^12 &, 2] / (Pi^(3/4) * 11^(3/8) * (2*(Root[-5832 - 3888*#1 + 1296*#1^2 + 324*#1^3 - 72*#1^4 - 12*#1^5 + #1^6 &, 2]^12 - Sqrt[-1156831381426176 + Root[-5832 - 3888*#1 + 1296*#1^2 + 324*#1^3 - 72*#1^4 - 12*#1^5 + #1^6 & , 2]^24]))^(1/8)), 10, 120][[1]]

Formula

Equals phi(exp(-22*Pi))^(5/2) / (phi(exp(-44*Pi)) * theta_3(0, exp(-11*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(11*Pi/24) * Gamma(1/4) * (((-3 + sqrt(11))^(1/4) * sqrt(((2*(47 - 27*sqrt(3))^(1/6) + (47 + 27*sqrt(3))^(1/6)* sqrt(7 + sqrt(33))) * (2 + ((11 + 3*sqrt(11)) * (4 - 3*sqrt(3) + 3*sqrt(11)))^(1/3) + (143 + 33*sqrt(3) + 45*sqrt(11) + 9*sqrt(33))^(1/3))) / (2*(47 - 27*sqrt(3))^(1/6) * (4 + 3*sqrt(3) + sqrt(11)) + (47 + 27*sqrt(3))^(1/6) * (4 - 3*sqrt(3) + sqrt(11)) * sqrt(7 + sqrt(33))))) / (6^(7/8)*(-(11/(-4*22^(1/3) + (1490 + 837*sqrt(3) - 351*sqrt(11) - 306*sqrt(33))^(1/3) + (1490 - 837*sqrt(3) - 351*sqrt(11) + 306*sqrt(33))^(1/3))))^(3/8) * ((1/34012224)*(2 + (11 + 3*sqrt(11))^(1/3) * ((4 - 3*sqrt(3) + 3*sqrt(11))^(1/3) + (4 + 3*sqrt(3) + 3*sqrt(11))^(1/3)))^12 - sqrt(-1 + (2 + (11 + 3*sqrt(11))^(1/3) * ((4 - 3*sqrt(3) + 3*sqrt(11))^(1/3) + (4 + 3*sqrt(3) + 3*sqrt(11))^(1/3)))^24 / 1156831381426176))^(1/8)) / Pi^(3/4)).

A363178 Decimal expansion of Product_{k>=1} (1 - exp(-13*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 1, 6, 7, 2, 3, 2, 3, 9, 4, 3, 2, 8, 4, 2, 2, 4, 2, 8, 1, 7, 7, 0, 0, 1, 1, 3, 8, 5, 4, 7, 3, 8, 9, 8, 9, 0, 7, 3, 2, 2, 1, 9, 5, 5, 3, 9, 6, 6, 6, 7, 7, 7, 1, 1, 6, 0, 8, 7, 8, 9, 3, 0, 1, 3, 7, 1, 5, 1, 9, 2, 9, 8, 4, 6, 8, 4, 9, 8, 8, 2, 6, 3, 1, 6, 0, 9, 2, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2023

Keywords

Examples

			0.99999999999999999816723239432842242817700113854738989073221955396667771...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-13*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-26*Pi)]^(5/2) / QPochhammer[E^(-52*Pi)] / EllipticTheta[3, 0, Exp[-13*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(13*Pi/24) * Gamma[1/4] * ((-(11 - 6*Sqrt[3])^(1/6) + (11 + 6*Sqrt[3])^(1/6)) / ((11 - 6*Sqrt[3])^(1/6) * (1 + 2*Sqrt[3]) + (-1 + 2*Sqrt[3]) * (11 + 6*Sqrt[3])^(1/6)))^(1/4) * (-5 - (-91 + 39*Sqrt[3] - 18*Sqrt[13] + 15*Sqrt[39])^(1/3) + (91 + 39*Sqrt[3] + 18*Sqrt[13] + 15*Sqrt[39])^(1/3))^(3/4) * (Sqrt[Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)]] / (Pi^(3/4) * 3 * 2^(11/8) * Sqrt[13] * ((1/2985984)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^12 - Sqrt[-1 + (1/8916100448256)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^24])^(1/8))), 10, 120][[1]]
    RealDigits[E^(13*Pi/24) * Gamma[1/4] / (Pi^(3/4) * 2^(7/8) * Sqrt[13*Root[1 + 22*#1 + 224*#1^2 + 1366*#1^3 + 5456*#1^4 + 14758*#1^5 + 27158*#1^6 + 33094*#1^7 + 23936*#1^8 + 8854*#1^9 + 7952*#1^10 - 22058*#1^11 + #1^12 & , 1]]), 10, 120][[1]]

Formula

Equals phi(exp(-26*Pi))^(5/2) / (phi(exp(-52*Pi)) * theta_3(0, exp(-13*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(13*Pi/24) * Gamma(1/4) * ((-(11 - 6*sqrt(3))^(1/6) + (11 + 6*sqrt(3))^(1/6)) / ((11 - 6*sqrt(3))^(1/6) * (1 + 2*sqrt(3)) + (-1 + 2*sqrt(3)) * (11 + 6*sqrt(3))^(1/6)))^(1/4) * (-5 - (-91 + 39*sqrt(3) - 18*sqrt(13) + 15*sqrt(39))^(1/3) + (91 + 39*sqrt(3) + 18*sqrt(13) + 15*sqrt(39))^(1/3))^(3/4) * (sqrt(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3))) / (Pi^(3/4) * 3 * 2^(11/8) * sqrt(13) * ((1/2985984)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^12 - sqrt(-1 + (1/8916100448256)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^24))^(1/8))).

A363179 Decimal expansion of Product_{k>=1} (1 - exp(-15*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 5, 7, 7, 4, 1, 1, 4, 5, 5, 8, 7, 8, 7, 5, 9, 1, 3, 2, 1, 9, 2, 0, 8, 5, 4, 4, 7, 3, 4, 8, 9, 1, 0, 6, 1, 9, 1, 4, 0, 0, 1, 3, 9, 9, 8, 5, 6, 2, 8, 4, 4, 1, 8, 9, 2, 9, 8, 6, 8, 0, 6, 4, 2, 7, 6, 6, 1, 1, 7, 3, 6, 6, 7, 5, 6, 5, 5, 0, 1, 5, 3, 8, 1, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2023

Keywords

Examples

			0.99999999999999999999657741145587875913219208544734891061914001399856284...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-15*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-30*Pi)]^(5/2) / QPochhammer[E^(-60*Pi)] / EllipticTheta[3, 0, Exp[-15*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(5*Pi/8) * Gamma[1/4] * (2 - Sqrt[3])^(55/24) * (2 + Sqrt[3])^(13/12) * (Sqrt[5] - 2)^(5/4) * (3 + Sqrt[5]) * (2 + Sqrt[2]*3^(3/4)*5^(1/4) + Sqrt[2]*15^(1/4))^(3/2) * (-15^(1/4) + Sqrt[4 + Sqrt[15]])^5 * ((15^(1/4) + Sqrt[4 + Sqrt[15]])^(5/2) / (Pi^(3/4) * 2048 * 3^(3/8) * Sqrt[5] * (2*(7 + 3*Sqrt[3] + Sqrt[5] + Sqrt[2]*3^(1/4)*5^(3/4) + Sqrt[2]*15^(1/4) + Sqrt[15]))^(1/4) * (((2 + Sqrt[3])^4 * (1 + Sqrt[5])^12 * (15^(1/4) + Sqrt[4 + Sqrt[15]])^12) / 16777216 - Sqrt[-1 + ((2 + Sqrt[3])^8 * (1 + Sqrt[5])^24 * (15^(1/4) + Sqrt[4 + Sqrt[15]])^24) / 281474976710656])^(1/8))), 10, 120][[1]]

Formula

Equals phi(exp(-30*Pi))^(5/2) / (phi(exp(-60*Pi)) * theta_3(0, exp(-15*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(5*Pi/8) * Gamma(1/4) * (2 - sqrt(3))^(55/24) * (2 + sqrt(3))^(13/12) * (sqrt(5) - 2)^(5/4) * (3 + sqrt(5)) * (2 + sqrt(2)*3^(3/4)*5^(1/4) + sqrt(2)*15^(1/4))^(3/2) * (-15^(1/4) + sqrt(4 + sqrt(15)))^5 * ((15^(1/4) + sqrt(4 + sqrt(15)))^(5/2) / (Pi^(3/4) * 2048 * 3^(3/8) * sqrt(5) * (2*(7 + 3*sqrt(3) + sqrt(5) + sqrt(2)*3^(1/4)*5^(3/4) + sqrt(2)*15^(1/4) + sqrt(15)))^(1/4) * (((2 + sqrt(3))^4 * (1 + sqrt(5))^12 * (15^(1/4) + sqrt(4 + sqrt(15)))^12) / 16777216 - sqrt(-1 + ((2 + sqrt(3))^8 * (1 + sqrt(5))^24 * (15^(1/4) + sqrt(4 + sqrt(15)))^24) / 281474976710656))^(1/8))).

A259147 Decimal expansion of phi(exp(-Pi/2)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

7, 4, 9, 3, 1, 1, 4, 7, 7, 8, 0, 0, 0, 0, 2, 7, 8, 7, 4, 2, 9, 6, 2, 5, 6, 5, 8, 7, 8, 3, 3, 8, 0, 3, 1, 1, 9, 0, 4, 0, 9, 2, 5, 2, 7, 9, 0, 1, 1, 7, 3, 9, 2, 8, 3, 1, 2, 0, 6, 7, 3, 1, 0, 1, 3, 1, 3, 5, 8, 8, 5, 3, 7, 5, 5, 1, 7, 4, 7, 2, 5, 8, 6, 1, 3, 4, 7, 5, 6, 3, 5, 7, 6, 5, 5, 8, 5, 8, 4, 0, 4, 6, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.74931147780000278742962565878338031190409252790117392831206731...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi/2]], 10, 105] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi/2)) = ((sqrt(2) - 1)^(1/3)*(4 + 3*sqrt(2))^(1/24) * exp(Pi/48) * Gamma(1/4))/(2^(5/6)*Pi^(3/4)).
phi(exp(-Pi/2)) = (sqrt(2)-1)^(1/4) * exp(Pi/48) * Gamma(1/4)/(2^(13/16)*Pi^(3/4)). - Vaclav Kotesovec, Jul 03 2017

A273084 Decimal expansion of theta_3(0, exp(-6*Pi)), where theta_3 is the 3rd Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 4, 8, 2, 4, 2, 7, 2, 1, 5, 9, 8, 0, 1, 4, 5, 6, 4, 2, 4, 3, 3, 0, 2, 3, 0, 9, 0, 6, 7, 4, 5, 7, 3, 2, 5, 4, 1, 4, 6, 0, 4, 1, 5, 7, 5, 1, 1, 4, 8, 0, 1, 1, 9, 0, 4, 5, 9, 3, 4, 8, 2, 3, 9, 1, 1, 1, 3, 6, 1, 2, 5, 1, 7, 1, 1, 8, 6, 0, 8, 8, 8, 1, 0, 9, 2, 6, 4, 0, 4, 4, 6, 7, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 14 2016

Keywords

Examples

			1.0000000130248242721598014564243302309067457325414604157511...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); Sqrt(2+Sqrt(8+6*Sqrt(3)+4*Sqrt(6 +4*Sqrt(3))))*Pi(C)^(1/4)/(2*3^(3/8)*Gamma(3/4)) // G. C. Greubel, Jan 07 2018
  • Maple
    evalf(sqrt(2 + sqrt(8 + 6*sqrt(3) + 4*sqrt(6 + 4*sqrt(3)))) * Pi^(1/4) / (2*3^(3/8) * GAMMA(3/4)), 120);
  • Mathematica
    RealDigits[EllipticTheta[3, 0, Exp[-6*Pi]], 10, 105][[1]]
    RealDigits[Sqrt[2 + Sqrt[8 + 6*Sqrt[3] + 4*Sqrt[6 + 4*Sqrt[3]]]] * Pi^(1/4) / (2*3^(3/8) * Gamma[3/4]), 10, 105][[1]]
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2) th3(exp(-6*Pi)) \\ Charles R Greathouse IV, Jun 06 2016
    

Formula

Equals sqrt(2+sqrt(8+6*sqrt(3)+4*sqrt(6+4*sqrt(3)))) * Pi^(1/4) / (2*3^(3/8)*Gamma(3/4)).
Equals sqrt((A273081^2 + A292888^4/A363018^2)/2). - Vaclav Kotesovec, May 17 2023

A292887 Decimal expansion of Product_{k>=1} (1 + exp(-3*Pi*k)).

Original entry on oeis.org

1, 0, 0, 0, 0, 8, 0, 7, 0, 6, 0, 3, 1, 0, 3, 3, 6, 2, 2, 5, 4, 7, 6, 3, 3, 7, 5, 3, 8, 2, 7, 4, 8, 1, 5, 1, 0, 3, 4, 3, 8, 0, 8, 2, 4, 1, 6, 3, 6, 3, 3, 6, 6, 4, 5, 9, 2, 2, 7, 2, 2, 0, 8, 5, 1, 3, 3, 1, 1, 2, 1, 5, 7, 3, 8, 8, 1, 4, 9, 1, 7, 5, 2, 0, 4, 2, 3, 9, 8, 1, 4, 8, 8, 2, 5, 5, 8, 5, 2, 7, 4, 8, 2, 5, 5
Offset: 1

Author

Vaclav Kotesovec, Sep 26 2017

Keywords

Examples

			1.000080706031033622547633753827481510343808241636336645922722085133112...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[9 + 6*Sqrt[3]] - 2 - Sqrt[3])^(1/3) * E^(Pi/8)/ 2^(3/8), 10, 120][[1]]
    RealDigits[QPochhammer[-1, E^(-3*Pi)]/2, 10, 120][[1]]

Formula

Equals (sqrt(9 + 6*sqrt(3)) - 2 - sqrt(3))^(1/3) * exp(Pi/8) / 2^(3/8).

A292902 Decimal expansion of Product_{j>=1} (1 - exp(-j)).

Original entry on oeis.org

5, 0, 4, 4, 2, 8, 6, 5, 4, 7, 2, 5, 9, 6, 6, 4, 0, 3, 3, 3, 4, 5, 6, 5, 5, 3, 1, 7, 0, 7, 6, 1, 9, 2, 5, 4, 2, 1, 1, 4, 6, 7, 4, 4, 7, 1, 7, 3, 7, 0, 7, 9, 8, 6, 0, 4, 6, 8, 8, 6, 9, 0, 4, 2, 1, 0, 1, 8, 9, 0, 1, 5, 9, 0, 5, 1, 7, 3, 9, 5, 1, 8, 1, 2, 2, 5, 1, 9, 5, 6, 3, 1, 8, 3, 7, 3, 3, 7, 7, 1, 8, 8, 4, 5, 6, 7, 6, 5, 7, 2, 7, 5, 7, 2, 3, 8, 1, 7, 5, 6
Offset: 0

Author

Peter Luschny, Sep 26 2017

Keywords

Examples

			0.50442865472596640333456553170761925421146744717370798604688690421...
		

Crossrefs

Cf. A292888.

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-1)], 10, 120][[1]]
Previous Showing 11-20 of 20 results.