cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A360525 Numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 180, 186, 204, 210, 222, 228, 246, 252, 258, 276, 282, 294, 300, 318, 330, 348, 354, 360, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A308127 at n = 15.
Analogous to abundant numbers (A005101) with A360522 instead of A000203.
Subsequence of A005101 because A360522(n) <= A000203(n) for all n.
The least odd term is a(1698) = A360526(1) = 15015.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 8, 95, 1135, 10890, 110867, 1104596, 11048123, 110534517, 1105167384, 11051009278, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1105...

Examples

			30 is a term since A360522(30) = 72 > 2*30.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1000], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}

A302936 Bi-unitary highly composite deficient numbers: bi-unitary deficient numbers k whose number of bi-unitary divisors bd(k) > bd(m) for all bi-unitary deficient numbers m < k.

Original entry on oeis.org

1, 2, 8, 32, 84, 512, 972, 1155, 13365, 25740, 318087, 612612, 11223927, 14549535, 440374077, 746503065, 19013596875
Offset: 1

Views

Author

Amiram Eldar, Apr 16 2018

Keywords

Comments

The record numbers of bi-unitary divisors are 1, 2, 4, 6, 8, 10, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, ...
The bi-unitary version of A302934.

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdivnum[n_] := DivisorSum[n, 1 &, Last@Intersection[f@#, f[n/#]] == 1 &]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; dm = 0; Do[sig = bsigma[n]; If[sig >= 2 n, Continue[]]; d = bdivnum[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}] (* after Michael De Vlieger at A188999 and A286324 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    lista(nn) = {my(maxd = 0); for(n=1, nn, vbiudiv = biudivs(n); if ((vecsum(vbiudiv) < 2*n) && (#vbiudiv > maxd), print1(n, ", "); maxd = #vbiudiv;););} \\ Michel Marcus, Apr 17 2018

Extensions

a(15)-a(17) from Amiram Eldar, Jan 26 2019
Previous Showing 21-22 of 22 results.