cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A372693 Numbers k such that A372692(k) = A372692(k+1) > 1.

Original entry on oeis.org

7380, 18755, 24804, 25631, 26299, 27467, 32799, 44891, 49196, 49725, 50940, 53603, 59652, 64386, 71027, 79739, 85788, 89300, 94275, 103212, 105056, 105875, 124992, 129348, 132011, 138060, 141899, 147100, 149435, 155484, 158147, 164196, 170324, 175571, 181620, 184283
Offset: 1

Views

Author

Amiram Eldar, May 10 2024

Keywords

Comments

The numbers k such that A372692(k) = A372692(k+1) = 1 are in A372690.

Crossrefs

Subsequence of A068781.
A372694 is a subsequence.
Similar sequences: Cf. A002961, A064125, A293183, A306985, A343819, A348346.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], ?(# == 0 &)])); s[1] = 1; s[n] := s[n] = Times @@ (Flatten@ (f @@@ FactorInteger[n]) + 1);
    Select[Range[10^5], (s1 = s[#]) > 1 && s1 == s[# + 1] &]
  • PARI
    s(n) = {my(f = factor(n), k); prod(i = 1, #f~, k = apply(x -> 1 - x, binary(f[i, 2])); prod(j = 1, #k, if(k[j], f[i, 1]^(2^(#k-j)) + 1, 1)));}
    lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 > 1 && s1 == s2, print1(k - 1, ", ")); s1 = s2);}

A294029 Values of bsigma(k) = bsigma(k+1), where bsigma is the sum of the bi-unitary divisors (A188999).

Original entry on oeis.org

24, 40, 60, 720, 960, 1440, 2160, 2640, 2400, 3000, 4320, 4320, 4320, 5280, 7400, 11520, 11880, 12960, 14400, 20160, 30240, 26640, 34560, 25200, 34560, 49920, 51840, 60480, 63360, 60480, 65280, 62400, 61560, 115200, 93600, 114912, 100800, 120960, 120960
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

The sum of bi-unitary divisors of numbers n such that n and n+1 have the same sum (A293183).
The bi-unitary version of A053215.

Examples

			24 is in the sequence since 24 = bsigma(14) = bsigma(15).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; For[k = 0, k < 10^6, k++; b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2]; a (* after Michael De Vlieger at A188999 *)

Formula

a(n) = A188999(A293183(n)).

A324367 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are larger than sqrt(k) (A238535).

Original entry on oeis.org

45, 62, 15795, 355022, 14257705, 28856174, 2324581982, 103321586193
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Comments

a(9) > 2*10^11. - Giovanni Resta, Sep 06 2019

Examples

			45 is in the sequence since A238535(45) = A238535(46) = 69.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # > Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10000}]; seq

Extensions

a(8) from Giovanni Resta, Sep 06 2019

A327875 Numbers k such that s(k) = s(k+1) where s(k) is the sum of unitary, squarefree divisors of k, including 1 (A092261).

Original entry on oeis.org

8, 14, 288, 675, 735, 957, 1334, 1634, 2685, 2871, 5750, 8055, 9800, 12104, 12167, 20145, 33998, 42818, 71994, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 144990, 147454, 166934, 201597, 235224, 274533, 289454, 324423, 332928, 347738, 383594, 400315
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p+1, 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; s1=0; seq = {}; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n,1,10000}]; seq
  • PARI
    s(n)={sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1))}
    { for(k=1, 10^6, if(s(k)==s(k+1), print1(k, ", "))) } \\ Andrew Howroyd, Sep 28 2019

Formula

8 is in the sequence since A092261(8) = A092261(9) = 1.

A332315 Numbers k such that k and k + 1 have the same norm of the sum of divisors in Gaussian integers.

Original entry on oeis.org

30514, 36777, 43978, 3474262, 5745125, 10628554, 16567494, 40831527, 58008301, 111798477, 142981839, 288834504, 392413941, 580867202, 650141557, 944224497, 967593411, 1874210882, 6306287377, 6442064745, 7377567197, 8121464245
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

The first term, 30514, is also a number k such that k and k + 1 have the sum divisors in Gaussian integers: -54720 + 48960*i (where i is the imaginary unit). What is the next term with this property?
No more terms below 1.5*10^10.

Examples

			30514 is a term since A103230(30514) = A103230(30515) = 5391360000.
		

Crossrefs

Programs

  • Mathematica
    csigma[n_] :=(Abs @ DivisorSigma[1, n, GaussianIntegers -> True])^2; seq = {}; n1 = csigma[1]; Do[n2 = csigma[n]; If[n1 == n2, AppendTo[seq, n - 1]]; n1 = n2, {n, 2, 5*10^5}]; seq

A332475 Numbers k such that k and k + 1 have the same norm of the sum of unitary divisors in Gaussian integers (A332474).

Original entry on oeis.org

5, 11, 37, 1738, 2772, 6600, 42251, 49913, 57816, 104754, 220324, 288350, 364452, 792156, 1711932, 1971475, 2607049, 2793473, 3211933, 3521148, 3526312, 4012736, 5805149, 5918276, 6522320, 6542147, 6635436, 7612267, 12604600, 14844791, 17078848, 19024332, 21177516
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2020

Keywords

Examples

			5 is a term since A332474(5) = A332474(6) = 80.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Abs[p] == 1, 1, (p^e + 1)]; normUsigma[n_] := Abs[Times @@ f @@@ FactorInteger[n, GaussianIntegers -> True]]^2; seq = {}; u1 = normUsigma[1]; Do[u2 = normUsigma[n]; If[u1 == u2, AppendTo[seq, n - 1]]; u1 = u2, {n, 2, 10^6}]; seq

A349063 Numbers k such that k and k+1 have the same sum of powerful divisors (A183097) and this sum is larger than 1.

Original entry on oeis.org

2988, 4067, 7595, 13572, 14651, 24156, 25235, 27684, 28763, 34740, 35819, 38268, 39347, 41327, 46403, 48852, 49931, 56987, 59436, 66492, 70020, 78155, 81683, 87660, 88739, 91188, 98244, 99323, 101772, 102851, 108828, 109907, 112356, 113435, 119412, 120491, 122940
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

Numbers k such that A183097(k) = A183097(k+1) > 1.

Examples

			2988 is a term since = A183097(2988) = A183097(2989) = 50 > 1.
		

Crossrefs

Cf. A183097.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (s1 = s[n]) > 1 && s1 == s[n + 1]; Select[Range[10^5], q]

A349224 Number k such that A033634(k) = A033634(k+1).

Original entry on oeis.org

11, 14, 957, 1334, 1485, 1634, 2685, 4136, 9347, 13915, 16260, 16499, 20145, 29903, 33998, 37236, 42251, 42818, 55308, 56419, 74918, 77748, 79826, 79833, 84134, 86343, 109864, 111506, 122073, 138237, 142116, 147454, 166934, 168739, 178356, 184260, 187863, 194028
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2021

Keywords

Examples

			11 is a term since A033634(11) = A033634(12) = 12.
		

Crossrefs

Cf. A033634.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[e_] := If[OddQ[e], e+2, e+1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); s[1] = 1; s[n_] := Times @@ (fun @@@ FactorInteger[n]); Select[Range[2*10^5], s[#] == s[#+1] &]

A349283 Numbers k such that A051378(k) = A051378(k+1).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 61183, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 104192, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

First differs from A333949 at n = 18.

Examples

			14 is a term since A051378(14) = A051378(15) = 24.
		

Crossrefs

Cf. A051378.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    s[1] = 1; s[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[2*10^5], s[#] == s[#+1] &]

A355713 Numbers k such that k and k+1 have the same sum of 5-smooth divisors.

Original entry on oeis.org

175, 2224, 2575, 4975, 7024, 9424, 9775, 11824, 12175, 14224, 14575, 16975, 19024, 21424, 21775, 23824, 24175, 26224, 26575, 28975, 31024, 33424, 33775, 35824, 36175, 38224, 38575, 40975, 43024, 45424, 45775, 47824, 48175, 50224, 50575, 52975, 55024, 57424, 57775
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355584(k) = A355584(k+1).
Equivalently, numbers k such that the largest 5-smooth divisors of k and k+1, A355582(k) and A355582(k+1), have the same sum of divisors (A000203).
For all the terms k, both k and k+1 are not squarefree: each of the two largest 5-smooth divisors, of k and k+1, cannot be squarefree, since the squarefree 5-smooth numbers are the divisors of 30 = 2*3*5 (A018255) whose values of sigma (A000203), {1, 3, 4, 6, 12, 18, 24, 72}, are not shared with sigma of any other 5-smooth number.
Apparently, all the terms are of only two types: numbers k such that A355582(k) = 16 and A355582(k+1) = 25, or numbers k such that A355582(k) = 25 and A355582(k+1) = 16. Both types are infinite sequences: The first type is the sequence of numbers of the form 2224 + 2400*m, where m is not congruent to 1 (mod 5), and the second type is the sequence of numbers of the form 175 + 2400*m, where m is not congruent to 3 (mod 5). If there are no other terms, then this sequence is a linear recurrence with a signature (1,0,0,0,0,0,0,1,-1). The question of the existence of other types is equivalent to the question of the existence of two coprime 5-smooth numbers other than 16 and 25 whose sums of divisors are equal.
Are there runs of 3 consecutive numbers with the same sum of 5-smooth divisors? There are no such runs below 5*10^10.

Examples

			175 is a term since A355584(175) = A355584(176) = 31.
		

Crossrefs

Subsequence of A013929 and A068781.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    f[p_, e_] := If[p > 5, 1, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] == s[# + 1] &]
  • PARI
    s(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    s1 = s(1); for(k = 2, 6e4, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);
Previous Showing 11-20 of 25 results. Next