cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A321256 Regular triangle where T(n,k) is the number of non-isomorphic connected set systems of weight n with density -1 <= k <= n-2.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 4, 0, 0, 0, 6, 1, 0, 0, 0, 13, 5, 0, 0, 0, 0, 23, 12, 2, 0, 0, 0, 0, 49, 36, 11, 0, 0, 0, 0, 0, 100, 95, 39, 5, 0, 0, 0, 0, 0, 220, 262, 143, 32, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets. The density of a set system is the sum of sizes of each part (weight) minus the number of parts minus the number of vertices.

Examples

			Triangle begins:
    1
    1   0
    2   0   0
    4   0   0   0
    6   1   0   0   0
   13   5   0   0   0   0
   23  12   2   0   0   0   0
   49  36  11   0   0   0   0   0
  100  95  39   5   0   0   0   0   0
  220 262 143  32   1   0   0   0   0   0
		

Crossrefs

First column is A321228. Row sums are A007718.

A321279 Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			The sequence of antichains begins:
   2: {{1}}
   3: {{1,1}}
   3: {{1},{1}}
   4: {{1,2}}
   5: {{1,1,1}}
   5: {{1},{1},{1}}
   6: {{1,1,2}}
   7: {{1,1,1,1}}
   7: {{1,1},{1,1}}
   7: {{1},{1},{1},{1}}
   8: {{1,2,3}}
   9: {{1,1,2,2}}
  10: {{1,1,1,2}}
  10: {{1,1},{1,2}}
  11: {{1,1,1,1,1}}
  11: {{1},{1},{1},{1},{1}}
  12: {{1,1,2,3}}
  12: {{1,2},{1,3}}
  13: {{1,1,1,1,1,1}}
  13: {{1,1,1},{1,1,1}}
  13: {{1,1},{1,1},{1,1}}
  13: {{1},{1},{1},{1},{1},{1}}
  14: {{1,1,1,1,2}}
  14: {{1,2},{1,1,1}}
  15: {{1,1,1,2,2}}
  15: {{1,1},{1,2,2}}
  16: {{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
Previous Showing 11-12 of 12 results.