A294401
Solution of the complementary equation a(n) = a(n-1) + b(n-2) + 2n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 9, 19, 32, 48, 67, 89, 115, 144, 176, 211, 249, 290, 334, 381, 431, 485, 542, 602, 665, 731, 800, 872, 947, 1025, 1106, 1190, 1277, 1368, 1462, 1559, 1659, 1762, 1868, 1977, 2089, 2204, 2322, 2443, 2567, 2694, 2824, 2957, 3094, 3234, 3377, 3523, 3672
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 4 = 9.
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + b[n - 2] + 2 n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294401 *)
Table[b[n], {n, 0, 10}]
A294415
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 11, 24, 47, 85, 148, 251, 419, 693, 1138, 1859, 3027, 4918, 7979, 12933, 20950, 33923, 54915, 88882, 143843, 232774, 376669, 609497, 986222, 1595777, 2582059, 4177898, 6760021, 10937985, 17698074, 28636129, 46334275, 74970478, 121304829, 196275385
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294415 *)
Table[b[n], {n, 0, 10}]
A294416
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 12, 27, 54, 99, 174, 297, 498, 825, 1357, 2220, 3618, 5882, 9547, 15479, 25079, 40614, 65752, 106428, 172245, 278741, 451057, 729872, 1181007, 1910961, 3092053, 5003102, 8095246, 13098442, 21193785, 34292327, 55486215, 89778648, 145264972, 235043732
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + b(0) + 2 = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294416 *)
Table[b[n], {n, 0, 10}]
A294417
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 8, 17, 32, 57, 99, 168, 280, 462, 757, 1235, 2009, 3262, 5291, 8575, 13889, 22488, 36402, 58916, 95345, 154289, 249663, 403982, 653676, 1057690, 1711399, 2769123, 4480558, 7249719, 11730316, 18980075, 30710432, 49690549, 80401024, 130091617
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + b(0) - 2 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 13, 14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294417 *)
Table[b[n], {n, 0, 10}]
A294418
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 12, 28, 56, 103, 181, 309, 518, 858, 1411, 2309, 3763, 6118, 9930, 16100, 26085, 42243, 68389, 110696, 179152, 289918, 469143, 759137, 1228359, 1987579, 3216026, 5203696, 8419816, 13623609, 22043525, 35667237, 57710868, 93378214, 151089194, 244467523
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + 2*b(0) = 12
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294418 *)
Table[b[n], {n, 0, 10}]
A294419
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 16, 37, 75, 138, 243, 415, 696, 1153, 1895, 3098, 5047, 8203, 13314, 21587, 34975, 56640, 91697, 148423, 240210, 388727, 629035, 1017864, 1647005, 2664979, 4312098, 6977195, 11289415, 18266736, 29556281, 47823151, 77379570, 125202863, 202582581
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) + 2*b(0) = 16
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294419 *)
Table[b[n], {n, 0, 10}]
A294420
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 14, 31, 62, 113, 198, 337, 564, 933, 1532, 2503, 4078, 6628, 10756, 17437, 28249, 45745, 74056, 119866, 193990, 313927, 507991, 821995, 1330066, 2152144, 3482296, 5634529, 9116919, 14751546, 23868566, 38620216, 62488889, 101109215, 163598217, 264707548
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) + b(n-2) = 14
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294420 *)
Table[b[n], {n, 0, 10}]
A294421
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 10, 19, 36, 63, 108, 181, 302, 496, 812, 1323, 2151, 3491, 5660, 9170, 14852, 24044, 38919, 62987, 101931, 164944, 266902, 431874, 698805, 1130709, 1829545, 2960286, 4789864, 7750184, 12540083, 20290303, 32830425, 53120767, 85951232, 139072040
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) - b(0) = 10
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294421 *)
Table[b[n], {n, 0, 10}]
A294422
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 7, 12, 21, 36, 59, 97, 158, 258, 418, 678, 1098, 1778, 2878, 4658, 7538, 12199, 19739, 31940, 51681, 83623, 135306, 218931, 354239, 573172, 927413, 1500587, 2428002, 3928591, 6356595, 10285189, 16641786, 26926977, 43568765, 70495744
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - b(0) + 1 = 7
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 11, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294422 *)
Table[b[n], {n, 0, 10}]
A294423
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 8, 15, 28, 49, 85, 142, 236, 388, 635, 1035, 1684, 2733, 4432, 7181, 11630, 18829, 30478, 49327, 79826, 129175, 209024, 338223, 547273, 885522, 1432822, 2318372, 3751223, 6069625, 9820879, 15890536, 25711448, 41602018, 67313501, 108915555, 176229093
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - b(0) + 2 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 11, 13, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294423 *)
Table[b[n], {n, 0, 10}]
Comments