cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A294869 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 20, 39, 66, 103, 151, 211, 284, 371, 473, 591, 726, 879, 1051, 1243, 1457, 1694, 1955, 2241, 2553, 2892, 3259, 3655, 4081, 4538, 5027, 5549, 6105, 6696, 7323, 7987, 8689, 9430, 10212, 11036, 11903, 12814, 13770, 14772, 15821, 16918, 18064, 19260
Offset: 0

Views

Author

Clark Kimberling, Nov 16 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 1 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
		

Crossrefs

Cf. A294860.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A294869 *)
    Table[b[n], {n, 0, 10}]

A294870 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 23, 45, 76, 117, 170, 236, 316, 411, 522, 650, 796, 961, 1146, 1352, 1580, 1831, 2106, 2407, 2735, 3091, 3476, 3891, 4337, 4815, 5326, 5871, 6451, 7067, 7720, 8411, 9141, 9911, 10722, 11575, 12471, 13411, 14396, 15427, 16506, 17634, 18812, 20041
Offset: 0

Views

Author

Clark Kimberling, Nov 16 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 2 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
m
		

Crossrefs

Cf. A294860.

Programs

  • Mathematica
    ex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 2;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A294870 *)
    Table[b[n], {n, 0, 10}]

A294871 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 26, 51, 86, 132, 190, 262, 349, 452, 572, 710, 867, 1044, 1242, 1462, 1705, 1972, 2264, 2582, 2927, 3300, 3703, 4137, 4603, 5102, 5635, 6203, 6807, 7448, 8127, 8845, 9603, 10402, 11243, 12127, 13055, 14028, 15047, 16113, 17227, 18390, 19603, 20867
Offset: 0

Views

Author

Clark Kimberling, Nov 18 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 3 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
		

Crossrefs

Cf. A294860.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + 3;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A294871 *)
    Table[b[n], {n, 0, 10}]

A294872 Solution of the complementary equation a(n) = 2*a(n-1) - a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 24, 49, 86, 137, 205, 292, 400, 531, 687, 870, 1082, 1325, 1601, 1912, 2260, 2647, 3075, 3546, 4063, 4628, 5243, 5910, 6631, 7408, 8243, 9138, 10095, 11116, 12203, 13358, 14583, 15880, 17251, 18698, 20223, 21828, 23515, 25286, 27143, 29088, 31123
Offset: 0

Views

Author

Clark Kimberling, Nov 18 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294860 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = 2*a(1) - a(0) + b(1) + 2 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
		

Crossrefs

Cf. A294860.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = 2 a[n - 1] - a[n - 2] + b[n - 1] + n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 18}]  (* A294872 *)
    Table[b[n], {n, 0, 10}]

A295998 Solution of the complementary equation a(n) = 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 5, 8, 16, 23, 41, 56, 93, 124, 199, 262, 413, 541, 844, 1101, 1708, 2223, 3438, 4470, 6901, 8966, 13829, 17960, 27687, 35950, 55405, 71932, 110843, 143898, 221721, 287832, 443479, 575702, 886997, 1151444, 1774036, 2302931, 3548116, 4605907, 7096278
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1.298123759410105...
See A295860 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    mex[t_] := NestWhile[# + 1 &, 1, MemberQ[t, #] &];
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = 2 a[n - 2] + b[n - 2];  (* A295998 *)
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 100}];
    Table[b[n], {n, 0, 30}]

Formula

a(0) = 1, a(1) = 2, b(0) = 3, so that a(2) = 5, b(1) = 4.
Complement: (b(n)) = (3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, ...)
Previous Showing 11-15 of 15 results.