cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A331300 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A057889(n)), and A057889 is a bijective base-2 reverse.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 19, 22, 25, 26, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 40, 41, 42, 43, 44, 32, 35, 45, 40, 39, 46, 47, 48, 36, 42, 47, 49, 43, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 57, 62, 69, 70, 71, 72, 73, 74, 65, 75, 76, 77, 78, 79, 80, 81, 55, 58, 82, 64, 69, 83, 84, 74, 63
Offset: 0

Views

Author

Antti Karttunen, Jan 18 2020

Keywords

Comments

Restricted growth sequence transform of A331166. See comments in that sequence.

Crossrefs

Cf. also A324400, A331303, A305801, A305801, A305900, A295300 for other "top level" filtering sequences.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2)));
    A331166(n) = min(n, A057889(n));
    v331300 = rgs_transform(vector(1+up_to,n,A331166(n-1)));
    A331300(n) = v331300[1+n];
    for(n=0,up_to,write("b331300.txt", n, " ", A331300(n)));

A295880 Filter combining the number of divisors (A000005) and the sum of divisors (A000203) of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 57, 61, 64, 65, 66, 67, 68, 69, 57, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 79
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000005(n) = numdiv(n);
    A000203(n) = sigma(n);
    Anotsubmitted0(n) = (1/2)*(2 + ((A000005(n)+A000203(n))^2) - A000005(n) - 3*A000203(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Anotsubmitted0(n))),"b295880.txt");

Formula

Restricted growth sequence transform of a(n) = (1/2)*(2 + ((A000005(n) + A000203(n))^2) - A000005(n) - 3*A000203(n)).

A325383 Lexicographically earliest sequence such that a(i) = a(j) => A000203(i) = A000203(j) and A009194(i) = A009194(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 16, 20, 25, 26, 27, 28, 21, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 32, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 51, 67, 68, 69, 70, 71, 72, 73, 53, 74, 75, 64, 61, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 66
Offset: 1

Views

Author

Antti Karttunen, May 08 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000203(n), A009194(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A009194(n) = gcd(n,sigma(n));
    v325383 = rgs_transform(vector(up_to,n,[sigma(n),A009194(n)]));
    A325383(n) = v325383[n];

A332230 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(2^k) = 0 for k >= 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 13, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 4, 29, 30, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 41, 46, 47, 48, 41, 49, 50, 51, 52, 53, 54, 55, 56, 4, 57, 58, 59, 60, 55, 58, 61, 62, 63, 64, 65, 66, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 76
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2020

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A048250(i) = A048250(j),
a(i) = a(j) => A332455(i) = A332455(j),
a(i) = a(j) => A332459(i) = A332459(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A209229(n) = (n && !bitand(n,n-1));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux332230(n) = if((n>2)&&A209229(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v332230 = rgs_transform(vector(up_to,n,Aux332230(n)));
    A332230(n) = v332230[n];
Previous Showing 11-14 of 14 results.