cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A296292 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 12, 31, 67, 133, 248, 444, 772, 1315, 2217, 3686, 6083, 9977, 16298, 26545, 43147, 70032, 113557, 184007, 298024, 482535, 781109, 1264242, 2045999, 3310941, 5357694, 8669445, 14028035, 22698437, 36727492, 59427014, 96155658, 155583893, 251740843
Offset: 0

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 12
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
    j = 1; While[j < 10, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296292 *)
    Table[b[n], {n, 0, 20}]    (* complement *)

A296555 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 21, 42, 76, 133, 227, 380, 629, 1033, 1688, 2749, 4467, 7248, 11749, 19033, 30821, 49895, 80759, 130699, 211505, 342253, 553809, 896115, 1449979, 2346151, 3796189, 6142401, 9938653, 16081119, 26019839, 42101027, 68120937, 110222037, 178343049
Offset: 0

Views

Author

Clark Kimberling, Dec 19 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 2 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n;
    j = 1; While[j < 16, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296555 *)
    Table[b[n], {n, 0, 20}] (* complement *)

A296776 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2*n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 13, 28, 56, 102, 179, 305, 511, 846, 1391, 2274, 3705, 6022, 9773, 15844, 25669, 41568, 67295, 108924, 176283, 285274, 461627, 746974, 1208678, 1955732, 3164493, 5120311, 8284893, 13405296, 21690284, 35095678, 56786063, 91881845, 148668015, 240549970
Offset: 0

Views

Author

Clark Kimberling, Jan 06 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 4 = 13
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296776 *)
    Table[b[n], {n, 0, 20}] (* complement *)

A296246 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 29, 68, 146, 278, 505, 883, 1509, 2536, 4214, 6946, 11385, 18587, 30261, 49172, 79794, 129366, 209601, 339451, 549581, 889608, 1439814, 2330098, 3770641, 6101523, 9873064, 15975548, 25849636, 41826273, 67677065, 109504563, 177182924, 286688856
Offset: 0

Views

Author

Clark Kimberling, Feb 06 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 29.
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296246 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296843 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n+1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 18, 35, 63, 109, 184, 306, 504, 825, 1345, 2187, 3551, 5758, 9330, 15110, 24463, 39597, 64085, 103708, 167820, 271556, 439405, 710991, 1150427, 1861450, 3011910, 4873394, 7885340, 12758771, 20644149, 33402959, 54047148, 87450148, 141497338
Offset: 0

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6
a(2) = a(0) + a(1) + b(3) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; b[3] = 6;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n + 1];
    j = 1; While[j < 16, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296843 *)
    Table[b[n], {n, 0, 20}] (* complement *)

A296849 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 28, 73, 182, 446, 1085, 2628, 6354, 15350, 37069, 89504, 216094, 521710, 1259533, 3040796, 7341146, 17723110, 42787389, 103297912, 249383238, 602064414, 1453512093, 3509088629, 8471689381, 20452467422, 49376624257, 119205715969, 287788056229
Offset: 0

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1 + sqrt(2) = A014176. [corrected by Clark Kimberling, Jun 09 2018]

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = 2*a(1) + a(0) + b(2) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = 2*a[n - 1] + a[n - 2] + b[n];
    j = 1; While[j < 7, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]; (* A296849 *)
    Table[b[n], {n, 0, 20}] (* complement *)
    Take[u, 30]

A297011 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) - b(n), where a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 5, 9, 17, 36, 81, 188, 446, 1068, 2569, 6192, 14938, 36052, 87024, 210081, 507166, 1224392, 2955928, 7136225, 17228354, 41592908, 100414144, 242421169, 585256454, 1412934048, 3411124520, 8235183057, 19881490602, 47998164228, 115877819024, 279753802241
Offset: 0

Views

Author

Clark Kimberling, Jan 13 2018

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1 + sqrt(2). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4
a(2) = 2*a(1) + a(0) - b(2) = 9
Complement: (b(n)) = (1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4;
    a[n_] := a[n] = 2 a[n - 1] + a[n - 2] - b[n];
    j = 1; While[j < 9, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]; (* A297011 *)
    Table[b[n], {n, 0, 25}] (* complement *)
    Take[u, 30]

A296247 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 30, 70, 149, 283, 513, 896, 1530, 2570, 4269, 7035, 11529, 18820, 30638, 49782, 80781, 130963, 212185, 343632, 556346, 900554, 1457525, 2358755, 3817009, 6176548, 9994398, 16171907, 26167329, 42340325, 68508810, 110850360, 179360466, 290212195
Offset: 0

Views

Author

Clark Kimberling, Dec 10 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 30
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296247 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296248 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 30, 69, 148, 281, 510, 891, 1522, 2557, 4248, 7001, 11474, 18731, 30494, 49549, 80404, 130353, 211198, 342035, 553762, 896373, 1450760, 2347809, 3799298, 6147891, 9948030, 16096882, 26045936, 42143907, 68190999, 110336131, 178528426, 288865926
Offset: 0

Views

Author

Clark Kimberling, Dec 10 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 30
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]     (* A296248 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296249 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 31, 71, 151, 286, 518, 904, 1543, 2591, 4303, 7090, 11618, 18964, 30871, 50159, 81391, 131950, 213782, 346216, 560527, 907319, 1468471, 2376466, 3845666, 6222916, 10069423, 16293239, 26363686, 42658014, 69022856, 111682095, 180706247, 292389711
Offset: 0

Views

Author

Clark Kimberling, Dec 10 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(2)^2 = 31;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]     (* A296249 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.
Previous Showing 11-20 of 63 results. Next