A296292
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 12, 31, 67, 133, 248, 444, 772, 1315, 2217, 3686, 6083, 9977, 16298, 26545, 43147, 70032, 113557, 184007, 298024, 482535, 781109, 1264242, 2045999, 3310941, 5357694, 8669445, 14028035, 22698437, 36727492, 59427014, 96155658, 155583893, 251740843
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5
a(2) = a(0) + a(1) + 2*b(1) = 12
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296292 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296555
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 10, 21, 42, 76, 133, 227, 380, 629, 1033, 1688, 2749, 4467, 7248, 11749, 19033, 30821, 49895, 80759, 130699, 211505, 342253, 553809, 896115, 1449979, 2346151, 3796189, 6142401, 9938653, 16081119, 26019839, 42101027, 68120937, 110222037, 178343049
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 2 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + n;
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296555 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296776
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2*n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 13, 28, 56, 102, 179, 305, 511, 846, 1391, 2274, 3705, 6022, 9773, 15844, 25669, 41568, 67295, 108924, 176283, 285274, 461627, 746974, 1208678, 1955732, 3164493, 5120311, 8284893, 13405296, 21690284, 35095678, 56786063, 91881845, 148668015, 240549970
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5
a(2) = a(0) + a(1) + b(2) + 4 = 13
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 2 n;
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296776 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296246
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 29, 68, 146, 278, 505, 883, 1509, 2536, 4214, 6946, 11385, 18587, 30261, 49172, 79794, 129366, 209601, 339451, 549581, 889608, 1439814, 2330098, 3770641, 6101523, 9873064, 15975548, 25849636, 41826273, 67677065, 109504563, 177182924, 286688856
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 29.
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...).
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296246 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296843
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n+1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 9, 18, 35, 63, 109, 184, 306, 504, 825, 1345, 2187, 3551, 5758, 9330, 15110, 24463, 39597, 64085, 103708, 167820, 271556, 439405, 710991, 1150427, 1861450, 3011910, 4873394, 7885340, 12758771, 20644149, 33402959, 54047148, 87450148, 141497338
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, b(3) = 6
a(2) = a(0) + a(1) + b(3) = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; b[3] = 6;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n + 1];
j = 1; While[j < 16, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296843 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296849
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 10, 28, 73, 182, 446, 1085, 2628, 6354, 15350, 37069, 89504, 216094, 521710, 1259533, 3040796, 7341146, 17723110, 42787389, 103297912, 249383238, 602064414, 1453512093, 3509088629, 8471689381, 20452467422, 49376624257, 119205715969, 287788056229
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5
a(2) = 2*a(1) + a(0) + b(2) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...)
-
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = 2*a[n - 1] + a[n - 2] + b[n];
j = 1; While[j < 7, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296849 *)
Table[b[n], {n, 0, 20}] (* complement *)
Take[u, 30]
A297011
Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) - b(n), where a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 5, 9, 17, 36, 81, 188, 446, 1068, 2569, 6192, 14938, 36052, 87024, 210081, 507166, 1224392, 2955928, 7136225, 17228354, 41592908, 100414144, 242421169, 585256454, 1412934048, 3411124520, 8235183057, 19881490602, 47998164228, 115877819024, 279753802241
Offset: 0
a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, b(2) = 4
a(2) = 2*a(1) + a(0) - b(2) = 9
Complement: (b(n)) = (1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, ...)
-
a[0] = 3; a[1] = 5; b[0] = 1; b[1] = 2; b[2] = 4;
a[n_] := a[n] = 2 a[n - 1] + a[n - 2] - b[n];
j = 1; While[j < 9, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A297011 *)
Table[b[n], {n, 0, 25}] (* complement *)
Take[u, 30]
A296247
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 30, 70, 149, 283, 513, 896, 1530, 2570, 4269, 7035, 11529, 18820, 30638, 49782, 80781, 130963, 212185, 343632, 556346, 900554, 1457525, 2358755, 3817009, 6176548, 9994398, 16171907, 26167329, 42340325, 68508810, 110850360, 179360466, 290212195
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 30
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296247 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296248
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 30, 69, 148, 281, 510, 891, 1522, 2557, 4248, 7001, 11474, 18731, 30494, 49549, 80404, 130353, 211198, 342035, 553762, 896373, 1450760, 2347809, 3799298, 6147891, 9948030, 16096882, 26045936, 42143907, 68190999, 110336131, 178528426, 288865926
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(2) = 30
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296248 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296249
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 31, 71, 151, 286, 518, 904, 1543, 2591, 4303, 7090, 11618, 18964, 30871, 50159, 81391, 131950, 213782, 346216, 560527, 907319, 1468471, 2376466, 3845666, 6222916, 10069423, 16293239, 26363686, 42658014, 69022856, 111682095, 180706247, 292389711
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(2)^2 = 31;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296249 *)
Table[b[n], {n, 0, 20}] (* complement *)
Comments