cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A296428 Decimal expansion of ratio-sum for A295367; see Comments.

Original entry on oeis.org

8, 8, 3, 9, 4, 4, 2, 6, 2, 1, 2, 7, 6, 4, 5, 1, 5, 3, 9, 7, 4, 9, 4, 4, 7, 3, 4, 0, 8, 4, 4, 1, 3, 0, 8, 1, 5, 6, 0, 3, 3, 1, 5, 6, 9, 0, 4, 1, 4, 6, 9, 1, 2, 9, 7, 0, 5, 3, 8, 5, 3, 9, 3, 9, 5, 9, 9, 9, 1, 4, 0, 5, 3, 9, 6, 9, 1, 3, 9, 1, 9, 5, 2, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A295367, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			8.83944262127645153974944...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2]*b[n - 1];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A295367 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296428 *)

A296429 Decimal expansion of ratio-sum for A296266; see Comments.

Original entry on oeis.org

1, 0, 2, 4, 2, 8, 9, 3, 9, 1, 0, 1, 2, 1, 3, 0, 3, 6, 7, 9, 8, 3, 4, 8, 7, 2, 4, 7, 4, 6, 0, 2, 4, 3, 8, 2, 2, 5, 2, 4, 6, 5, 0, 8, 6, 4, 0, 9, 5, 2, 2, 0, 7, 1, 6, 7, 7, 6, 2, 4, 8, 6, 4, 6, 5, 3, 9, 9, 7, 1, 7, 3, 6, 9, 3, 7, 7, 7, 9, 9, 7, 0, 4, 5, 3, 1
Offset: 2

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296266, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			10.24289391012130367983487...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2]*b[n];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296266 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296429 *)

A296430 Decimal expansion of ratio-sum for A296272; see Comments.

Original entry on oeis.org

1, 2, 5, 8, 3, 1, 8, 6, 1, 0, 0, 5, 5, 6, 0, 9, 5, 7, 1, 8, 9, 0, 9, 6, 6, 0, 8, 2, 7, 9, 6, 6, 1, 1, 9, 8, 7, 5, 4, 5, 9, 4, 1, 1, 2, 9, 8, 2, 6, 3, 1, 7, 9, 2, 5, 1, 5, 2, 0, 0, 3, 8, 0, 0, 0, 8, 1, 2, 9, 4, 3, 5, 1, 5, 9, 8, 0, 7, 3, 0, 7, 0, 3, 1, 1, 9
Offset: 2

Views

Author

Clark Kimberling, Dec 14 2017

Keywords

Comments

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296272 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			ratio-sum = 12.5831861005560957189096...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]*b[n];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296272 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296430 *)

A296432 Decimal expansion of ratio-sum for A296284; see Comments.

Original entry on oeis.org

6, 2, 1, 0, 3, 2, 7, 1, 0, 9, 4, 6, 6, 1, 8, 4, 9, 4, 2, 2, 7, 9, 6, 7, 9, 0, 4, 8, 4, 0, 2, 4, 2, 2, 4, 6, 0, 5, 4, 5, 3, 6, 8, 4, 1, 5, 7, 0, 9, 5, 7, 9, 1, 2, 3, 4, 0, 6, 9, 2, 7, 3, 5, 8, 7, 0, 5, 4, 0, 4, 4, 9, 1, 7, 0, 1, 8, 9, 8, 8, 8, 9, 6, 2, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296284 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Ratio-sum = 6.21032710946618494227967...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n - 2];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296284 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296432 *)

A296433 Decimal expansion of ratio-sum for A296288; see Comments.

Original entry on oeis.org

7, 0, 9, 3, 8, 8, 3, 2, 4, 4, 5, 5, 8, 2, 3, 3, 2, 8, 2, 5, 1, 8, 6, 3, 2, 9, 3, 3, 3, 3, 8, 1, 5, 1, 2, 8, 8, 8, 5, 0, 3, 6, 1, 6, 9, 3, 0, 3, 9, 2, 1, 8, 1, 5, 6, 0, 9, 5, 1, 9, 9, 8, 2, 3, 1, 8, 2, 1, 8, 1, 7, 8, 3, 0, 2, 7, 3, 2, 6, 6, 5, 4, 3, 0, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296288 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Ratio-sum = 7.093883244558233282518632...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n - 2];
    j = 1; While[j < 13, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]; (* A296288 *)
    g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
    Take[RealDigits[s, 10][[1]], 100]  (* A296433 *)

A296453 Decimal expansion of limiting power-ratio for A296251; see Comments.

Original entry on oeis.org

2, 7, 0, 9, 7, 1, 7, 3, 6, 3, 7, 1, 6, 1, 3, 7, 3, 1, 8, 8, 6, 1, 4, 3, 6, 9, 2, 3, 1, 6, 0, 0, 8, 5, 3, 0, 9, 3, 6, 3, 8, 6, 6, 0, 5, 9, 5, 9, 1, 4, 1, 6, 1, 9, 8, 9, 1, 8, 8, 7, 3, 5, 6, 8, 0, 2, 8, 5, 4, 7, 4, 3, 7, 7, 7, 1, 9, 4, 2, 7, 0, 9, 9, 0, 4, 4
Offset: 2

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296251 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Limiting power-ratio = 27.09717363716137318861436923160085309363...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]^2;
    j = 1; While[j < 12, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296251 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296453 *)

A296454 Decimal expansion of limiting power-ratio for A296257; see Comments.

Original entry on oeis.org

1, 9, 9, 3, 6, 8, 4, 3, 0, 3, 3, 5, 8, 8, 2, 6, 3, 7, 3, 5, 2, 2, 3, 0, 4, 5, 3, 7, 2, 2, 4, 2, 3, 2, 9, 4, 5, 7, 5, 1, 6, 5, 4, 3, 7, 7, 7, 1, 9, 2, 7, 9, 2, 1, 0, 9, 7, 6, 4, 7, 3, 1, 3, 5, 7, 5, 6, 3, 7, 9, 9, 1, 1, 7, 1, 3, 0, 3, 3, 3, 0, 5, 5, 2, 6, 6
Offset: 2

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296257 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Limiting power-ratio = 19.93684303358826373522304537224232945751...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]^2;
    j = 1; While[j < 12, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296257 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296454 *)

A296455 Decimal expansion of limiting power-ratio for A296260; see Comments.

Original entry on oeis.org

2, 3, 1, 0, 8, 1, 5, 7, 2, 4, 3, 5, 8, 7, 8, 8, 6, 0, 4, 1, 4, 4, 4, 5, 0, 7, 0, 7, 5, 1, 4, 3, 5, 3, 8, 4, 0, 6, 9, 4, 6, 9, 4, 5, 0, 2, 8, 1, 4, 3, 8, 3, 7, 1, 5, 8, 4, 4, 7, 9, 1, 3, 7, 6, 7, 6, 2, 2, 1, 8, 8, 3, 0, 2, 4, 1, 2, 6, 5, 5, 2, 3, 1, 8, 2, 2
Offset: 2

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296260 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Limiting power-ratio = 23.10815724358788604144450707514353840694...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]*b[n - 2];
    j = 1; While[j < 12, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296260 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296455 *)

A296456 Decimal expansion of limiting power-ratio for A296266; see Comments.

Original entry on oeis.org

2, 6, 3, 8, 7, 6, 2, 8, 9, 9, 1, 3, 8, 5, 1, 1, 7, 7, 5, 3, 8, 3, 3, 2, 0, 7, 8, 1, 2, 3, 2, 0, 7, 3, 6, 6, 5, 0, 3, 0, 3, 9, 3, 2, 0, 1, 8, 0, 4, 5, 5, 2, 4, 4, 6, 6, 5, 6, 4, 2, 7, 1, 8, 5, 2, 5, 0, 7, 9, 7, 3, 0, 4, 8, 2, 8, 9, 5, 0, 3, 0, 7, 8, 7, 2, 4
Offset: 2

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296266 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Limiting power-ratio = 26.38762899138511775383320781232073665030...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]*b[n - 2];
    j = 1; While[j < 12, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296266 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296456 *)

A296457 Decimal expansion of limiting power-ratio for A296272; see Comments.

Original entry on oeis.org

3, 1, 1, 4, 5, 0, 3, 2, 6, 8, 6, 2, 1, 2, 6, 7, 8, 0, 6, 4, 4, 2, 2, 4, 2, 0, 6, 2, 6, 3, 1, 4, 4, 7, 3, 3, 0, 7, 3, 4, 1, 5, 3, 7, 2, 2, 5, 0, 8, 3, 8, 8, 0, 5, 8, 5, 3, 2, 6, 5, 1, 4, 0, 4, 5, 2, 0, 4, 8, 0, 9, 5, 4, 5, 6, 4, 5, 2, 4, 4, 6, 1, 6, 0, 2, 1
Offset: 2

Views

Author

Clark Kimberling, Dec 15 2017

Keywords

Comments

Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296272 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.

Examples

			Limiting power-ratio = 31.14503268621267806442242062631447330734...
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]*b[n - 1];
    j = 1; While[j < 12, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, 15}]  (* A296272 *)
    z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
    StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
    Take[RealDigits[Last[h], 10][[1]], 120] (* A296457 *)
Previous Showing 11-20 of 24 results. Next