cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 115 results. Next

A296862 Numbers whose base-3 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

10, 11, 19, 20, 23, 31, 32, 35, 37, 38, 58, 59, 62, 64, 65, 71, 73, 74, 77, 91, 92, 93, 94, 95, 98, 100, 101, 104, 105, 106, 107, 112, 113, 116, 118, 119, 154, 155, 158, 172, 173, 174, 175, 176, 179, 181, 182, 185, 186, 187, 188, 193, 194, 197, 199, 200, 208
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296861-A296863 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-3 digits of 208 are 2, 1, 2, 0, 1; here #(pits) = 2 and #(peaks) = 1, so 208 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 3;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296861 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296862 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296863 *)

A296863 Numbers whose base-3 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

15, 16, 42, 43, 45, 48, 49, 84, 87, 88, 123, 124, 126, 129, 130, 135, 136, 137, 138, 141, 142, 144, 147, 148, 149, 150, 151, 165, 168, 169, 204, 205, 246, 249, 250, 252, 258, 259, 261, 264, 265, 327, 330, 331, 366, 367, 369, 372, 373, 378, 379, 380, 381, 384
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296861-A296863 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-3 digits of 384 are 1, 1, 2, 0, 2, 0; here #(pits) = 1 and #(peaks) = 2, so 384 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 3;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296861 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296862 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296863 *)

A296864 Numbers whose base-4 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 26, 27, 31, 32, 36, 37, 40, 41, 42, 43, 47, 48, 52, 53, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 72, 73, 76, 77, 78, 80, 84, 85, 86, 87, 90, 91, 95, 97, 98, 99, 102, 103, 104, 105
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296864-A296866 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-4 digits of 105 are 1, 2, 2, 1; here #(pits) = 0 and #(peaks) = 0, so 105 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 4;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296864 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296865 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296866 *)

A296865 Numbers whose base-4 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

17, 18, 19, 33, 34, 35, 38, 39, 49, 50, 51, 54, 55, 59, 69, 70, 71, 74, 75, 79, 81, 82, 83, 133, 134, 135, 138, 139, 143, 145, 146, 147, 154, 155, 159, 161, 162, 163, 166, 167, 197, 198, 199, 202, 203, 207, 209, 210, 211, 218, 219, 223, 225, 226, 227, 230
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296864-A296866 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-4 digits of 230 are 3, 2, 1, 2; here #(pits) = 1 and #(peaks) = 0, so 230 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 4;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296864 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296865 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296866 *)

A296866 Numbers whose base-4 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

24, 25, 28, 29, 30, 44, 45, 46, 88, 89, 92, 93, 94, 96, 100, 101, 108, 109, 110, 112, 116, 117, 120, 121, 122, 172, 173, 174, 176, 180, 181, 184, 185, 186, 260, 264, 265, 268, 269, 270, 344, 345, 348, 349, 350, 352, 356, 357, 364, 365, 366, 368, 372, 373
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296864-A296866 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-4 digits of 373 are 1,1,3,1,1; here #(pits) = 0 and #(peaks) = 2, so 373 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 4;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296864 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296865 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296866 *)

A296867 Numbers whose base-5 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 37, 38, 39, 43, 44, 49, 50, 55, 56, 60, 61, 62, 63, 64, 68, 69, 74, 75, 80, 81, 85, 86, 87, 90, 91, 92, 93, 94, 99, 100, 105, 106, 110, 111, 112
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296867-A296869 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-5 digits of 112 are 4,2,2; here #(pits) = 0 and #(peaks) = 0, so 112 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 5;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296867 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]    (* A296868 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]    (* A296869 *)

A296868 Numbers whose base-5 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

26, 27, 28, 29, 51, 52, 53, 54, 57, 58, 59, 76, 77, 78, 79, 82, 83, 84, 88, 89, 101, 102, 103, 104, 107, 108, 109, 113, 114, 119, 131, 132, 133, 134, 137, 138, 139, 143, 144, 149, 151, 152, 153, 154, 256, 257, 258, 259, 262, 263, 264, 268, 269, 274, 276, 277
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296867-A296869 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-5 digits of 277 are 2,1,0,2; here #(pits) = 1 and #(peaks) = 0, so 277 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 5;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296867 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296868 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296869 *)

A296869 Numbers whose base-5 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

35, 36, 40, 41, 42, 45, 46, 47, 48, 65, 66, 67, 70, 71, 72, 73, 95, 96, 97, 98, 160, 161, 165, 166, 167, 170, 171, 172, 173, 175, 180, 181, 190, 191, 192, 195, 196, 197, 198, 200, 205, 206, 210, 211, 212, 220, 221, 222, 223, 225, 230, 231, 235, 236, 237, 240
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296867-A296869 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-5 digits of 240 are 1,4,3,0; here #(pits) = 0 and #(peaks) = 1, so 240 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 5;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296867 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296868 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296869 *)
    updnQ[n_]:=Total[Which[#[[1]]<#[[2]]>#[[3]],1,#[[1]]>#[[2]]<#[[3]],-1,True,0]&/@Partition[IntegerDigits[n,5],3,1]]>0; Select[Range[ 250],updnQ] (* Harvey P. Dale, Dec 20 2020 *)

A296870 Numbers whose base-6 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 57, 58, 59, 64, 65, 71, 72, 78, 79, 84, 85, 86, 87, 88, 89, 93, 94, 95, 100, 101
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296870-A296872 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-6 digits of 101 are 2,4,5; here #(pits) = 0 and #(peaks) = 0, so 101 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 6;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296870 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296871 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296872 *)

A296871 Numbers whose base-6 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

37, 38, 39, 40, 41, 73, 74, 75, 76, 77, 80, 81, 82, 83, 109, 110, 111, 112, 113, 116, 117, 118, 119, 123, 124, 125, 145, 146, 147, 148, 149, 152, 153, 154, 155, 159, 160, 161, 166, 167, 181, 182, 183, 184, 185, 188, 189, 190, 191, 195, 196, 197, 202, 203
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296870-A296872 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-6 digits of 203 are 5,3,5; here #(pits) = 1 and #(peaks) = 0, so 203 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 6;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296870 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296871 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296872 *)
Previous Showing 61-70 of 115 results. Next