A297999 Solution (a(n)) of the near-complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, , b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
1, 2, 8, 10, 12, 16, 19, 22, 23, 25, 29, 30, 34, 35, 41, 43, 44, 46, 52, 52, 54, 60, 60, 62, 64, 66, 70, 75, 77, 78, 80, 82, 84, 88, 91, 92, 94, 96, 98, 102, 105, 108, 111, 112, 114, 118, 119, 121, 123, 127, 132, 134, 137, 140, 141, 143, 147, 148, 154, 156
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 8. Complement: (b(n)) = (3,4,5,6,7,9,11,13,14,15,17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[1]*b[n] - a[0]*b[n - 1] + n; Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 3000}]; Table[a[n], {n, 0, 150}] (* A297999 *) Table[b[n], {n, 0, 150}] (* A298110 *) (* Peter J. C. Moses, Jan 16 2018 *)
Comments