cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A331287 a(n) = gcd(n, A225546(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 2, 9, 2, 1, 12, 1, 2, 1, 1, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 9, 4, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 4, 1, 2, 1, 4, 1, 18, 1, 8, 1, 2, 1, 12, 1, 2, 9, 1, 1, 2, 1, 4, 1, 2, 1, 18, 1, 2, 3, 4, 1, 2, 1, 80, 1, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 8, 1, 2, 9, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2020

Keywords

Crossrefs

Cf. A225546, A225547 (fixed points), A297845, A331288, A331310, A331311.

Programs

  • PARI
    A331287(n) = gcd(n, A225546(n));
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331287(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,if(!(n%prime(i)),for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1]))); m<<=1); prod(i=1,u,prime(i)^min(valuation(n,prime(i)),A048675(prods[i]))));

Formula

a(n) = gcd(n, A225546(n)).
a(n) = A331310(n) * A331311(n).
a(A297845(n,9)) = A297845(a(n),9). - Peter Munn, Jan 24 2020

A297473 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n)^2).

Original entry on oeis.org

1, 2, 5, 16, 11, 90, 17, 512, 625, 550, 23, 6480, 31, 1666, 2695, 65536, 41, 101250, 47, 110000, 10285, 5566, 59, 1866240, 14641, 10478, 1953125, 653072, 67, 1212750, 73, 33554432, 19435, 23698, 31603, 65610000, 83, 33934, 44795, 88000000, 97, 9071370, 103
Offset: 1

Views

Author

Rémy Sigrist, Dec 30 2017

Keywords

Comments

This sequence is the main diagonal of A297845.
This sequence has similarities with A296857.

Examples

			For n = 12:
- 12 = 2^2 * 3 = prime(1+0)^2 * prime(1+1),
- f(12) = 2 + x,
- f(12)^2 = 4 + 4*x + x^2,
- a(12) = prime(1+0)^4 * prime(1+1)^4 * prime(1+2) = 2^4 * 3^4 * 5 = 6480.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod (i=1, #p, prod(j=1, #p, prime(p[i]+p[j]-1)^(f[i,2]*f[j,2])))

Formula

For any n > 0 and k > 0:
- A001221(a(n)) <= A001221(n)^2,
- A001222(a(n)) = A001222(n)^2,
- A055396(a(n)) = 2*A055396(n)-1 + [n=1],
- A061395(a(n)) = 2*A061395(n)-1 + [n=1],
- a(A000040(n)) = A031368(n),
- a(A000040(n)^k) = A031368(n)^(k^2).

A326376 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: for any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) o f(k)) (where o denotes function composition).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 4, 2, 2, 1, 1, 4, 3, 2, 1, 2, 2, 4, 4, 2, 1, 1, 4, 5, 4, 5, 2, 1, 8, 2, 6, 16, 4, 6, 2, 1, 1, 8, 7, 8, 11, 4, 7, 2, 1, 2, 4, 8, 256, 10, 90, 4, 8, 2, 1, 1, 4, 9, 8, 17, 12, 17, 4, 9, 2, 1, 4, 2, 10, 16, 8, 47250, 14, 512, 4, 10, 2, 1, 1, 8
Offset: 1

Views

Author

Rémy Sigrist, Jul 02 2019

Keywords

Comments

This sequence has connections with A297845.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.

Examples

			Array T(n, k) begins:
  n\k|  1  2   3    4   5      6   7          8        9       10
  ---+-----------------------------------------------------------
    1|  1  1   1    1   1      1   1          1        1        1
    2|  2  2   2    2   2      2   2          2        2        2
    3|  1  2   3    4   5      6   7          8        9       10
    4|  4  4   4    4   4      4   4          4        4        4
    5|  1  2   5   16  11     90  17        512      625      550
    6|  2  4   6    8  10     12  14         16       18       20
    7|  1  2   7  256  17  47250  29  134217728  5764801  5656750
    8|  8  8   8    8   8      8   8          8        8        8
    9|  1  4   9   16  25     36  49         64       81      100
   10|  2  4  10   32  22    180  34       1024     1250     1100
The corresponding polynomials are:
  f(n)\f(k)| 0 1 x     2 x^2   x+1             x^3   3  2*x     x^2+1
  ---------+---------------------------------------------------------------------
          0| 0 0 0     0 0     0               0     0  0       0
          1| 1 1 1     1 1     1               1     1  1       1
          x| 0 1 x     2 x^2   x+1             x^3   3  2*x     x^2+1
          2| 2 2 2     2 2     2               2     2  2       2
        x^2| 0 1 x^2   4 x^4   x^2+2*x+1       x^6   9  4*x^2   x^4+2*x^2+1
        x+1| 1 2 x+1   3 x^2+1 x+2             x^3+1 4  2*x+1   x^2+2
        x^3| 0 1 x^3   8 x^6   x^3+3*x^2+3*x+1 x^9   27 8*x^3   x^6+3*x^4+3*x^2+1
          3| 3 3 3     3 3     3               3     3  3       3
        2*x| 0 2 2*x   4 2*x^2 2*x+2           2*x^3 6  4*x     2*x^2+2
      x^2+1| 1 2 x^2+1 5 x^4+1 x^2+2*x+2       x^6+1 10 4*x^2+1 x^4+2*x^2+2
		

Crossrefs

See A326377 for the main diagonal of T.

Programs

  • PARI
    g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1))
    f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i,2] * v^(primepi(f[i,1]) - 1))
    T(n,k) = g(f(n, f(k)))

Formula

For any m, n, k > 0 and any i >= 0:
- T(1, k) = 1,
- T(2^i, k) = 2^i,
- T(3, k) = k,
- T(3^i, k) = k^i,
- T(5, k) = A297473(k),
- T(6, k) = 2*k,
- T(n, 1) = A006519(n),
- T(n, 2) = A061142(n),
- T(n, 3) = n,
- T(n, 5) = A319525(n),
- T(m*n, k) = T(m, k) * T(n, k).

A324592 Square array T(n, k) read by diagonals, n > 0, k > 0; for any number m > 0 with prime factorization Product_{i > 0} prime(i)^e(i), let f(m) = Sum_{i > 0} e(i) * sqrt(A005117(i)); f establishes a bijection between the positive numbers and the finite sums of square roots of squarefree numbers; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 11, 16, 11, 6, 1, 1, 7, 12, 25, 25, 12, 7, 1, 1, 8, 17, 36, 8, 36, 17, 8, 1, 1, 9, 27, 49, 55, 55, 49, 27, 9, 1, 1, 10, 16, 64, 31, 72, 31, 64, 16, 10, 1, 1, 11, 33, 81, 125, 119, 119, 125
Offset: 1

Views

Author

Rémy Sigrist, Sep 03 2019

Keywords

Comments

The set of square roots of squarefree numbers, { sqrt(A005117(i)), i > 0 }, is Q-linearly independent. The set of finite sums of square roots of squarefree numbers is closed under multiplication, hence the sequence is well defined.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v).
This sequence has similarities with A297845.

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10
  ---+-------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10
    3|  1   3   4    9   11   12   17    27    16    33
    4|  1   4   9   16   25   36   49    64    81   100
    5|  1   5  11   25    8   55   31   125   121    40
    6|  1   6  12   36   55   72  119   216   144   330
    7|  1   7  17   49   31  119   32   343   289   217
    8|  1   8  27   64  125  216  343   512   729  1000
    9|  1   9  16   81  121  144  289   729   256  1089
   10|  1  10  33  100   40  330  217  1000  1089   400
For n = 3 and k = 5:
- f(3) = f(prime(2)) = sqrt(A005117(2)) = sqrt(2),
- f(5) = f(prime(3)) = sqrt(A005117(3)) = sqrt(3),
- f(3) * f(5) = sqrt(6) = sqrt(A005117(5)),
- hence T(3, 5) = prime(5) = 11.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(m, n*k) = T(m, n) * T(m, k) and T(n*k, m) = T(n, m) * T(k, m) (T is completely multiplicative in both parameters),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- T(prime(n), prime(n)) = 2^A005117(n) (where prime(n) denotes the n-th prime number).
Previous Showing 21-24 of 24 results.