cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A322705 Number of k-uniform k-regular hypergraphs spanning n vertices, for some 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 472, 23342
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is k-uniform if all edges contain exactly k vertices, and k-regular if all vertices belong to exactly k edges. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 2 hypergraphs:
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 5 hypergraphs:
  {{1},{2},{3},{4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The a(5) = 26 hypergraphs:
  {{1},{2},{3},{4},{5}}
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,3},{3,4},{4,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,4},{2,4},{2,5},{3,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
  {{1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,4},{1,4,5},{2,3,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,3,4},{2,4,5},{3,4,5}}
  {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}}
  {{1,2,3},{1,3,4},{1,4,5},{2,3,5},{2,4,5}}
  {{1,2,3},{1,3,5},{1,4,5},{2,3,4},{2,4,5}}
  {{1,2,4},{1,2,5},{1,3,4},{2,3,5},{3,4,5}}
  {{1,2,4},{1,2,5},{1,3,5},{2,3,4},{3,4,5}}
  {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4,5}}
  {{1,2,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,4,5}}
  {{1,2,5},{1,3,4},{1,4,5},{2,3,4},{2,3,5}}
  {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{k}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,n}],{n,1,6}]

A302129 Number of unlabeled uniform connected hypergraphs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 6, 1, 9, 10, 17, 1, 108, 1, 86, 401, 482, 1, 4469, 1, 8435, 47959, 8082, 1, 1007342, 52414, 112835, 15338453, 11899367, 1, 362657533, 1, 977129970, 9349593479, 35787684, 1771297657, 390347162497, 1, 779945988, 9360467497257, 16838238535445
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size. The weight of a hypergraph is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 9 uniform connected hypergraphs:
  {{1,2,3,4,5,6,7,8}}
  {{1,2,3,7}, {4,5,6,7}}
  {{1,2,5,6}, {3,4,5,6}}
  {{1,3,4,5}, {2,3,4,5}}
  {{1,2}, {1,3}, {2,4}, {3,4}}
  {{1,3}, {2,4}, {3,5}, {4,5}}
  {{1,4}, {2,3}, {2,4}, {3,4}}
  {{1,4}, {2,5}, {3,5}, {4,5}}
  {{1,5}, {2,5}, {3,5}, {4,5}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n, k).
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, d==1, InvEulerT(vector(d, i, T(n/d, i)))[d] )))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Jan 16 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 16 2024

A321134 Number of uniform hypergraphs spanning n vertices where every two vertices appear together in some edge.

Original entry on oeis.org

1, 1, 1, 2, 7, 406, 505635
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			The a(4) = 7 hypergraphs:
  {{1,2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Subsets[Subsets[Range[n],{k}]],And[Union@@#==Range[n],Length[Union@@(Subsets[#,{2}]&/@#)]==Binomial[n,2]]&]],{k,1,n}],{n,1,6}]
Previous Showing 11-13 of 13 results.