A299951
Coefficients in expansion of (E_4^3/E_6^2)^(1/16).
Original entry on oeis.org
1, 108, 18792, 8775216, 3375768096, 1535055129576, 691959629136096, 325485731190285792, 154751723387164258560, 74822912718767823810204, 36526619326785857845042608, 17998154668247683887778684176, 8931078840823632559970453020032
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16), this sequence (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/16) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299953
Coefficients in expansion of (E_4^3/E_6^2)^(1/12).
Original entry on oeis.org
1, 144, 27648, 12540096, 4971036672, 2263040955360, 1031452724072448, 487587831652591488, 233267529030162186240, 113311495859272029716688, 55566291037565862262794240, 27487705978359515260636550208, 13689979692617556597746930024448
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18), this sequence (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299993
Coefficients in expansion of (E_4^3/E_6^2)^(1/9).
Original entry on oeis.org
1, 192, 41472, 18342144, 7524397056, 3440911653504, 1589472997005312, 756816895536990720, 364982499184388898816, 178417371665487543380928, 88017286719942539086814208, 43770603489875525093472688896, 21905830503405563891572154843136
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24), this sequence (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/9) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299994
Coefficients in expansion of (E_4^3/E_6^2)^(1/8).
Original entry on oeis.org
1, 216, 49248, 21609504, 9000122112, 4129083886032, 1919370450227328, 917374442680570176, 444151666318727522304, 217813424092164713883960, 107771776495186976967396672, 53736084111333058216805911392, 26958647064591216695092188902400
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32), this sequence (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A300052
Coefficients in expansion of (E_4^3/E_6^2)^(1/6).
Original entry on oeis.org
1, 288, 76032, 33042816, 14318032896, 6651157620672, 3146793694792704, 1522045714678435584, 745464270665241870336, 369134048335617435664800, 184269983601798163049283072, 92610644166133510115124717696
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36), this sequence (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/6) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A300053
Coefficients in expansion of (E_4^3/E_6^2)^(1/4).
Original entry on oeis.org
1, 432, 145152, 64494144, 29760915456, 14274670230432, 6975951829890048, 3459591515857458816, 1733116511275051696128, 875135886353582630388336, 444632598699435462934282752, 227042568315636603738176892096
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48), this sequence (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/4) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A300054
Coefficients in expansion of (E_4^3/E_6^2)^(1/3).
Original entry on oeis.org
1, 576, 235008, 109880064, 53449592832, 26574124961664, 13393739222599680, 6814262482916285952, 3490692930294883909632, 1797524713443792341369664, 929454499859725260939506688, 482202319224911188610453541120
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72), this sequence (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 12;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/3) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)