cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A302641 Number of nonnegative integers k such that n^2 - 3*2^k can be written as x^2 + 2*y^2 with x and y integers.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4, 4, 5, 1, 4, 4, 4, 4, 5, 4, 3, 3, 6, 5, 5, 4, 5, 5, 5, 1, 4, 5, 6, 4, 5, 5, 6, 4, 5, 6, 6, 4, 7, 4, 7, 3, 3, 7, 4, 5, 6, 6, 5, 4, 7, 6, 6, 5, 6, 5, 6, 1, 7, 5, 6, 5, 7, 7, 4, 4, 6, 5, 8, 5, 6, 7, 5, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 10 2018

Keywords

Comments

The author's Square Conjecture in A301471 implies that a(n) > 0 for all n > 1.
We have a(2^n) = 1 for all n > 0. In fact, (2^n)^2 = (2^(n-1))^2 + 2*0^2 + 3*2^(2*n-2). If k > 2*n-2 then 3*2^k >= 6*2^(2*n-2) > (2^n)^2. If 0 <= k < 2*n-2, then 2*n-k is at least 3 and hence (2^n)^2 - 3*2^k = 2^k*(2^(2*n-k)-3) cannot be written as x^2 + 2*y^2 with x and y integers.

Examples

			a(2) = 1 with 2^2 = 1^2 + 2*0^2 + 3*2^0.
a(3) = 2 with 3^2 = 2^2 + 2*1^2 + 3*2^0 = 1^2 + 2*1^2 + 3*2^1.
a(2857932461) = 1 since 3 is the only nonnegative integer k such that 2857932461^2 - 3*2^k has the form x^2 + 2*y^2 with x and y integers.
a(4428524981) = 2 since 3 and 8 are the only nonnegative integers k such that 4428524981^2 - 3*2^k has the form x^2 + 2*y^2 with x and y integers.
a(4912451281) = 3 since 3, 6 and 7 are the only nonnegative integers k with 4428524981^2 - 3*2^k = x^2 + 2*y^2 for some integers x and y.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[(Mod[Part[Part[f[n],i],1],8]==5||Mod[Part[Part[f[n],i],1],8]==7)&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n^2-3*2^k],r=r+1],{k,0,Log[2,n^2/3]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A300139 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with 4*x - 3*y a square, where x,y,z,w are nonnegative integers with z <= w such that 10*x or y is a square.

Original entry on oeis.org

1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 4, 3, 2, 1, 2, 2, 2, 3, 5, 3, 4, 2, 1, 1, 1, 4, 6, 5, 2, 3, 3, 1, 3, 4, 5, 4, 5, 3, 3, 2, 2, 6, 6, 2, 1, 4, 2, 2, 2, 2, 9, 6, 6, 3, 4, 3, 1, 4, 3, 4, 4, 4, 3, 3, 2, 6, 9, 4, 5, 4, 4, 1, 2, 4, 7, 9, 2, 3, 3, 1, 2
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 12 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 16^k*m with k = 0,1,2,... and m = 0, 7, 8, 13, 22, 23, 24, 31, 44, 56, 71, 79, 88, 109, 120, 152, 184, 472, 1912, 6008, 9080.
Conjecture 2: Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with 3*x - y twice a square, where x,y,z,w are nonnegative integers such that 5*x or y is a square.
By the author's 2017 JNT paper, any nonnegative integer can be written as the sum of a fourth power and three squares.
See also A281976, A300666, A300667, A300708 and A300712 for similar conjectures.
a(n) > 0 for all n = 0..10^8. Also, Conjecture 2 holds for all n = 0..10^8. - Zhi-Wei Sun, Oct 05 2020

Examples

			a(22) = 1 since 22 = 1^2 + 1^2 + 2^2 + 4^2 with 1 = 1^2 and 4*1 - 3*1 = 1^2.
a(23) = 1 since 23 = 3^2 + 1^2 + 2^2 + 3^2 with 1 = 1^2 and 4*3 - 3*1 = 3^2.
a(109) = 1 since 109 = 0^2 + 0^2 + 3^2 + 10^2 with 0 = 0^2 and 4*0 - 3*0 = 0^2.
a(184) = 1 since 184 = 10^2 + 8^2 + 2^2 + 4^2 with 10*10 = 10^2 and 4*10 - 3*8 = 4^2.
a(6008) = 1 since 6008 = 12^2 + 16^2 + 42^2 + 62^2 with 16 = 4^2 and 4*12 - 3*16 = 0^2.
a(9080) = 1 since 9080 = 10^2 + 12^2 + 0^2 + 94^2 with 10*10 = 10^2 and 4*10 - 3*12 = 2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[Mod[m^2+3y,4]==0&&(SQ[10(m^2+3y)/4]||SQ[y]), Do[If[SQ[n-((m^2+3y)/4)^2-y^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n-((m^2+3y)/4)^2-y^2)/2]]}]],{m,0,2n^(1/4)},{y,0,4/5*Sqrt[n-m^4/16]}];tab=Append[tab,r],{n,0,80}];Print[tab]

A301805 Number of ways to write 3*n^2 as x^2 + 10*y^2 + 2^z, where x, y and z are nonnegative integers with z > 3.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 6, 4, 4, 3, 5, 4, 4, 5, 7, 5, 4, 4, 6, 4, 7, 5, 5, 7, 7, 5, 5, 4, 8, 5, 7, 6, 11, 6, 6, 5, 8, 5, 6, 7, 5, 7, 6, 5, 5, 5, 7, 7, 4, 4, 8, 8, 8, 6, 6, 6, 9, 8, 8, 7, 8, 6, 10, 6, 10, 6, 8, 8, 8, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 27 2018

Keywords

Comments

It might seem that a(n) > 0 for all n > 2. However, we find that a(323525083) = 0, moreover 3*323525083^2 cannot be written as x^2 + 10*y^2 + 2^z with x,y,z nonnegative integers. We note also that a(270035155) = 0 but 3*270035155^2 - 2^0 has the form x^2 + 10*y^2 with x and y integers.
My way to check whether 3*n^2 can be written as x^2 + 10*y^2 + 2^z is to find z such that 3*n^2 - 2^z can be written as x^2 + 10*y^2. I observe that a positive integer n has the form x^2 + 10*y^2 with x and y integers if and only if the p-adic order ord_p(n) of n is even for any prime p == 3, 17, 21, 27, 29, 31, 33, 39 (mod 40) and the sum of those ord_p(n) with p prime and p == 2, 5, 7, 13, 23, 37 (mod 40) is even.
From David A. Corneth, Mar 27 2018: (Start)
If a(n) > 0 then a(2*n) > 0; 3*n^2 = x^2 + 10*y^2 + 2^z <=> 3*(2*n)^2 = 4 * 3*n^2 = 4 * (x^2 + 10*y^2 + 2^z) = (2*x)^2 + 10 * (2*y)^2 + 2^(z + 2).
So we just need to check odd n and as z > 0, 2 | 2^z and furthermore 2 | 10 * y^2 so 3*x^2 must be odd, i.e., x must be odd for 3*n^2 to be odd. Also, y must be odd. For odd n, 3*n^2 == 3 (mod 4), for odd x, x^2 == (1 mod 4), for z >= 3, 2^z == 0 (mod 4) so 10 * y^2 must be == 2 (mod 4) which happens if and only if y is odd. (End)

Examples

			a(1) = a(2) = 0 since 3*1^2 < 3*2^2 < 2^4.
a(3) = 1 since 3*3^2 = 1^2 + 10*1^2 + 2^4.
a(4) = 1 since 3*4^2 = 4^2 + 10*0^2 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[3*n^2-2^k-10x^2],r=r+1],{k,4,Log[2,3n^2]},{x,0,(3*n^2-2^k)/10}];tab=Append[tab,r],{n,1,80}];Print[tab]

A301891 Number of ways to write 2*n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 3*y + 5*z + 15*w is a power of 4.

Original entry on oeis.org

2, 1, 1, 2, 3, 1, 2, 1, 3, 1, 2, 1, 6, 3, 8, 2, 5, 4, 6, 3, 4, 3, 6, 1, 3, 3, 7, 2, 8, 9, 8, 1, 15, 5, 8, 3, 11, 1, 5, 1, 4, 4, 2, 2, 10, 7, 17, 1, 18, 11, 14, 6, 16, 6, 17, 3, 21, 10, 16, 8, 19, 8, 30, 2, 15, 9, 18, 5, 28, 5, 27, 4, 13, 11, 24, 6, 28, 17, 20, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 28 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m with k = 0,1,2,... and m = 2, 3, 6, 10, 38.
Conjecture 2: For any positive integer n, we can write 2*n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 3*y + 5*z + 15*w is twice a power of 4.

Examples

			a(1) = 2 since 2*1^2 = 1^2 + 1^2 + 0^2 + 0^2 with 1 + 3*1 + 5*0 + 15*0 = 4, and 2*1^2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 + 3*0 + 5*0 + 15*1 = 4^2.
a(2) = 1 since 2*2^2 = 0^2 + 2^2 + 2^2 + 0^2 with 0 + 3*2 + 5*2 + 15*0 = 4^2.
a(3) = 1 since 2*3^2 = 1^2 + 1^2 + 0^2 + 4^2 with 1 + 3*1 + 5*0 + 15*4 = 4^3.
a(6) = 1 since 2*6^2 = 0^2 + 8^2 + 2^2 + 2^2 with 0 + 3*8 + 5*2 + 15*2 = 4^3.
a(10) = 1 since 2*10^2 = 10^2 + 8^2 + 6^2 + 0^2 with 10 + 3*8 + 5*6 + 15*0 = 4^3.
a(38) = 1 since 2*38^2 = 34^2 + 34^2 + 24^2 + 0^2 with 34 + 3*34 + 5*24 + 15*0 = 4^4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]]
    tab={};Do[r=0;Do[If[SQ[2n^2-x^2-y^2-z^2]&&Pow[x+3y+5z+15*Sqrt[2n^2-x^2-y^2-z^2]],r=r+1],{x,0,Sqrt[2]n},{y,0,Sqrt[2n^2-x^2]},{z,0,Sqrt[2n^2-x^2-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Previous Showing 31-34 of 34 results.