cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A300248 Filter sequence combining A046523(n) and A078898(n), the prime signature of n and the number of times the smallest prime factor of n is the smallest prime factor for numbers <= n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 4, 9, 2, 10, 2, 11, 12, 13, 2, 14, 3, 15, 16, 17, 2, 18, 2, 19, 20, 21, 4, 22, 2, 23, 8, 24, 2, 25, 2, 26, 27, 28, 2, 29, 3, 30, 31, 32, 2, 33, 12, 34, 35, 36, 2, 37, 2, 38, 39, 40, 6, 41, 2, 42, 43, 44, 2, 45, 2, 46, 47, 48, 4, 49, 2, 50, 51, 52, 2, 53, 20, 54, 55, 56, 2, 57, 12, 58, 59, 60, 8, 61, 2, 62, 63, 64, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 03 2018

Keywords

Comments

Restricted growth sequence transform of P(A046523(n), A078898(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(10) = a(65) (= 6) because A078898(10) = A078898(65) = 5 (both numbers occur in column 5 of A083221) and because both have the same prime-signature (both are nonsquare semiprimes).
		

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
    A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From A046523
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A078898(n) = { if(n<=1,n, my(spf=A020639(n),k=1,m=n/spf); while(m>1,if(A020639(m)>=spf,k++); m--); (k)); };
    Aux300248(n) = if(1==n,0,(1/2)*(2 + ((A078898(n)+A046523(n))^2) - A078898(n) - 3*A046523(n)));
    write_to_bfile(1,rgs_transform(vector(65537,n,Aux300248(n))),"b300248.txt");

A323234 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 0, and for n > 1, f(n) = ordered pair [A053645(n), A079944(n-2)], where A053645(n) gives n without its most significant bit, while A079944(n-2) gives the second most significant bit of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 4, 7, 8, 9, 10, 11, 12, 2, 4, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 2, 4, 7, 8, 13, 14, 15, 16, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 2, 4, 7, 8, 13, 14, 15, 16, 25, 26, 27, 28, 29, 30, 31, 32, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

Also the restricted growth sequence transform of function f(1) = 0, f(n) = [A053645(n), A278222(n)] for n > 1.
For all i, j:
a(i) = a(j) => A286622(i) = A286622(j),
a(i) = a(j) => A323235(i) = A323235(j),
a(i) = a(j) => A323236(i) = A323236(j).

Crossrefs

Cf. also A300226 (an analogous filter sequence for prime factorization).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
    A053645(n) = (n-A053644(n));
    A079944off0(n) = (1==binary(2+n)[2]);
    A323234aux(n) = if(1==n,0,[A053645(n), A079944off0(n-2)]);
    v323234 = rgs_transform(vector(up_to,n,A323234aux(n)));
    A323234(n) = v323234[n];

A350068 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A350063(i) = A350063(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 4, 4, 8, 2, 7, 2, 7, 6, 9, 2, 10, 3, 9, 5, 11, 2, 12, 2, 13, 4, 9, 4, 14, 2, 4, 9, 15, 2, 16, 2, 7, 7, 17, 2, 18, 3, 19, 9, 7, 2, 10, 6, 10, 9, 20, 2, 21, 2, 9, 7, 22, 4, 12, 2, 11, 4, 16, 2, 23, 2, 9, 7, 11, 4, 12, 2, 18, 8, 9, 2, 24, 9, 25, 17, 26, 2, 24, 6, 11, 20, 27, 9
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A350063(n)].
For all i, j >= 1: A305897(i) = A305897(j) => a(i) = a(j).

Crossrefs

Cf. A000040 (positions of 2's), A001248 (of 3's).

Programs

  • PARI
    up_to = 3003;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A350063(n) = if(1==n,0,A046523(A000265(A156552(n))));
    Aux350068(n) = [A046523(n),A350063(n)];
    v350068 = rgs_transform(vector(up_to, n, Aux350068(n)));
    A350068(n) = v350068[n];

A300246 Filter sequence combining A046523(n) and A078899(n), the prime signature of n and the number of times the greatest prime factor of n is the greatest prime factor for numbers <= n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 8, 9, 2, 10, 2, 7, 8, 4, 2, 11, 12, 4, 13, 7, 2, 14, 2, 15, 8, 4, 16, 17, 2, 4, 8, 18, 2, 14, 2, 7, 19, 4, 2, 20, 21, 22, 8, 7, 2, 23, 16, 24, 8, 4, 2, 25, 2, 4, 22, 26, 16, 14, 2, 7, 8, 27, 2, 28, 2, 4, 29, 7, 30, 14, 2, 31, 32, 4, 2, 33, 16, 4, 8, 24, 2, 34, 30, 7, 8, 4, 16, 35, 2, 36, 22, 37, 2, 14, 2, 24, 38
Offset: 1

Views

Author

Antti Karttunen, Mar 09 2018

Keywords

Comments

Restricted growth sequence transform of P(A046523(n), A078899(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Examples

			a(30) = a(42) (= 14) because A078899(30) = A078899(42) = 6 and both numbers are products of three distinct primes, thus have the same prime signature.
a(35) = a(55) = a(65) (= 16) because A078899(35) = A078899(55) = A078899(65) = 5 and because all three are nonsquare semiprimes.
		

Crossrefs

Cf. also A300247, A300248.
Differs from A300226 for the first time at n=40, where a(40) = 18.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A006530(n) = if(1==n, n, vecmax(factor(n)[, 1]));
    A078899(n) = { if(n<=1,n, my(gpf=A006530(n),k=1,m=n/gpf); while(m>1,if(A006530(m)<=gpf,k++); m--); (k)); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux300246(n) = if(1==n,0,(1/2)*(2 + ((A078899(n)+A046523(n))^2) - A078899(n) - 3*A046523(n)));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300246(n))),"b300246.txt");

A339874 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A052126(n) for n > 1, and f(1) = 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 5, 3, 2, 4, 2, 3, 5, 6, 2, 7, 2, 4, 5, 3, 2, 6, 8, 3, 9, 4, 2, 7, 2, 10, 5, 3, 8, 11, 2, 3, 5, 6, 2, 7, 2, 4, 9, 3, 2, 10, 12, 13, 5, 4, 2, 14, 8, 6, 5, 3, 2, 11, 2, 3, 9, 15, 8, 7, 2, 4, 5, 13, 2, 16, 2, 3, 17, 4, 12, 7, 2, 10, 18, 3, 2, 11, 8, 3, 5, 6, 2, 14, 12, 4, 5, 3, 8, 15, 2, 19, 9, 20, 2, 7, 2, 6, 17
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Comments

For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A001222(i) = A001222(j),
a(i) = a(j) => A322826(i) = A322826(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    Aux339874(n) = if(1==n,0,A052126(n));
    v339874 = rgs_transform(vector(up_to, n, Aux339874(n)));
    A339874(n) = v339874[n];

Formula

a(1) = 1; for n > 1, a(n) = 1 + A322826(n).
Previous Showing 11-15 of 15 results.