A301761 Number of ways to choose a rooted partition of each part in a constant rooted partition of n.
1, 1, 2, 3, 5, 6, 13, 12, 26, 31, 57, 43, 150, 78, 224, 293, 484, 232, 1190, 386, 2260, 2087, 2558, 1003, 11154, 4701, 7889, 13597, 30041, 3719, 83248, 5605, 95006, 84486, 63506, 251487, 654394, 17978, 169864, 490741, 2290336, 37339, 4079503, 53175, 3979370
Offset: 1
Keywords
Examples
The a(7) = 13 rooted twice-partitions: (5), (41), (32), (311), (221), (2111), (11111), (2)(2), (2)(11), (11)(2), (11)(11), (1)(1)(1), ()()()()()().
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[Sum[PartitionsP[n/d-1]^d,{d,Divisors[n]}],{n,50}]
-
PARI
a(n)=if(n==1, 1, sumdiv(n-1, d, numbpart((n-1)/d-1)^d)) \\ Andrew Howroyd, Aug 26 2018
Formula
a(n) = Sum_{d | n-1} A000041((n-1)/d-1)^d for n > 1. - Andrew Howroyd, Aug 26 2018
Comments