A301969 Number of 7Xn 0..1 arrays with every element equal to 0, 1 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
64, 610, 632, 1156, 2454, 8705, 33860, 120603, 444357, 1715911, 6574776, 25055403, 96049774, 368934080, 1415983660, 5435511772, 20873907896, 80167521480, 307889914336, 1182522157914, 4541861862000, 17444676630768, 67003068862917
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..1..1. .0..0..1..0..1. .0..1..1..0..1. .0..1..0..1..0 ..0..1..0..0..1. .1..0..1..0..1. .0..0..1..0..1. .0..1..0..1..0 ..0..1..1..0..1. .1..1..1..0..0. .1..0..1..1..1. .1..0..1..0..1 ..0..0..1..0..1. .1..0..1..1..0. .1..0..1..0..1. .1..0..1..1..1 ..1..1..1..0..1. .1..0..0..1..0. .1..0..1..0..0. .1..0..1..0..1 ..1..0..1..0..1. .1..1..0..0..0. .1..0..1..1..0. .1..0..1..0..0 ..1..0..1..0..1. .0..1..0..1..1. .1..0..0..1..0. .1..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A301964.
Formula
Empirical: a(n) = 2*a(n-1) +31*a(n-3) +10*a(n-4) +30*a(n-5) -282*a(n-6) -548*a(n-7) -1110*a(n-8) -220*a(n-9) +2288*a(n-10) +7498*a(n-11) +11635*a(n-12) +8602*a(n-13) -7081*a(n-14) -33921*a(n-15) -52592*a(n-16) -42945*a(n-17) +4748*a(n-18) +65470*a(n-19) +93586*a(n-20) +61066*a(n-21) -17191*a(n-22) -82766*a(n-23) -86139*a(n-24) -28107*a(n-25) +39729*a(n-26) +63115*a(n-27) +34943*a(n-28) -9501*a(n-29) -29505*a(n-30) -17331*a(n-31) +4542*a(n-32) +13303*a(n-33) +6480*a(n-34) -2878*a(n-35) -5323*a(n-36) -2066*a(n-37) +1003*a(n-38) +1389*a(n-39) +444*a(n-40) -173*a(n-41) -193*a(n-42) -60*a(n-43) +5*a(n-44) +9*a(n-45) +4*a(n-46) +a(n-47) for n>52
Comments