cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A067039 The tower function n^{(n-1)!}.

Original entry on oeis.org

1, 2, 9, 4096, 59604644775390625
Offset: 1

Views

Author

Amarnath Murthy, Dec 29 2001

Keywords

Comments

a(n) = n^(n-1)^(n-2)^...^3^2^1 with all power operators nested from the left. Nesting from the right gives A049384. - Gus Wiseman, Jul 03 2019

Examples

			a(4) = 4^(3!) = 4^6 = 4096.
		

Crossrefs

Programs

  • Maxima
    makelist((n+1)^(n!),n,0,6); /* Martin Ettl, Jan 17 2013 */

A316784 Number of orderless identity tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 10, 1, 2, 2, 4, 1, 8, 1, 6, 2, 2, 2, 13, 1, 2, 2, 10, 1, 8, 1, 4, 4, 2, 1, 26, 1, 4, 2, 4, 1, 10, 2, 10, 2, 2, 1, 28, 1, 2, 4, 13, 2, 8, 1, 4, 2, 8, 1, 46, 1, 2, 4, 4, 2, 8, 1, 26, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2018

Keywords

Comments

A factorization of n is a finite nonempty multiset of positive integers greater than 1 with product n. An orderless identity tree-factorization of n is either (case 1) the number n itself or (case 2) a finite set of two or more distinct orderless identity tree-factorizations, one of each factor in a factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(24)=10 orderless identity tree-factorizations:
  24
  (4*6)
  (3*8)
  (2*12)
  (2*3*4)
  (4*(2*3))
  (3*(2*4))
  (2*(2*6))
  (2*(3*4))
  (2*(2*(2*3)))
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    oltsfacs[n_]:=If[n<=1,{{}},Prepend[Select[Union@@Function[q,Sort/@Tuples[oltsfacs/@q]]/@DeleteCases[postfacs[n],{n}],UnsameQ@@#&],n]];
    Table[Length[oltsfacs[n]],{n,100}]
  • PARI
    seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(w[k], e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018

Formula

a(p^n) = A300660(n) for prime p. - Andrew Howroyd, Nov 18 2018
Previous Showing 11-12 of 12 results.