A067039 The tower function n^{(n-1)!}.
1, 2, 9, 4096, 59604644775390625
Offset: 1
Keywords
Examples
a(4) = 4^(3!) = 4^6 = 4096.
Programs
-
Maxima
makelist((n+1)^(n!),n,0,6); /* Martin Ettl, Jan 17 2013 */
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 4^(3!) = 4^6 = 4096.
makelist((n+1)^(n!),n,0,6); /* Martin Ettl, Jan 17 2013 */
The a(24)=10 orderless identity tree-factorizations: 24 (4*6) (3*8) (2*12) (2*3*4) (4*(2*3)) (3*(2*4)) (2*(2*6)) (2*(3*4)) (2*(2*(2*3)))
postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; oltsfacs[n_]:=If[n<=1,{{}},Prepend[Select[Union@@Function[q,Sort/@Tuples[oltsfacs/@q]]/@DeleteCases[postfacs[n],{n}],UnsameQ@@#&],n]]; Table[Length[oltsfacs[n]],{n,100}]
seq(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += binomial(w[k], e)*v[i]))); w} \\ Andrew Howroyd, Nov 18 2018
Comments