cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A316903 Heinz numbers of aperiodic integer partitions whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 147, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],And[GCD@@FactorInteger[#][[All,2]]==1,IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 9, 25, 49, 77, 121, 125, 169, 221, 245, 289, 323, 343, 361, 375, 437, 529, 841, 899, 961, 1331, 1369, 1517, 1681, 1763, 1849, 1859, 2021, 2197, 2209, 2401, 2773, 2809, 2873, 3127, 3481, 3721, 3757, 4087, 4489, 4757, 4913, 5041, 5183, 5329, 5929, 6137, 6241
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    77: {4,5}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   221: {6,7}
   245: {3,4,4}
   289: {7,7}
   323: {7,8}
   343: {4,4,4}
   361: {8,8}
   375: {2,3,3,3}
   437: {8,9}
   529: {9,9}
   841: {10,10}
   899: {10,11}
   961: {11,11}
For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
Previous Showing 21-22 of 22 results.