cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A335941 Number of partitions of n such that the set s of parts and multiplicities satisfies s = {1..max(s)}.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 2, 5, 5, 9, 8, 15, 11, 14, 22, 28, 30, 36, 37, 53, 60, 80, 83, 104, 114, 148, 157, 201, 218, 283, 284, 362, 400, 455, 518, 624, 697, 807, 907, 1036, 1181, 1368, 1531, 1727, 1990, 2197, 2563, 2849, 3182, 3568, 4095, 4548, 5143, 5720, 6420
Offset: 0

Views

Author

Alois P. Heinz, Jun 30 2020

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 2: 11, 2.
a(3) = 1: 21.
a(4) = 1: 211.
a(5) = 4: 2111, 221, 311, 32.
a(6) = 2: 2211, 321.
a(7) = 5: 22111, 2221, 3211, 322, 331.
a(8) = 5: 22211, 32111, 3221, 3311, 332.
a(9) = 9: 222111, 321111, 32211, 3222, 33111, 3321, 42111, 4311, 432.
a(10) = 8: 2221111, 322111, 32221, 331111, 33211, 4222, 4321, 433.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,s) option remember;
         `if`(n=0, `if`(s={$0..max(s)}, 1, 0), `if`(i<1, 0, add(
            b(n-i*j, i-1, {s[], j, `if`(j=0, 0, i)}), j=0..n/i)))
        end:
    a:= n-> b(n, floor((sqrt(1+8*(n+1))-1)/2), {0}):
    seq(a(n), n=0..55);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] =
         If[n == 0, If[s == Range[0, Max[s]], 1, 0], If[i < 1, 0, Sum[
         b[n-i*j, i-1, Union@Flatten@{s, j, If[j == 0, 0, i]}], {j, 0, n/i}]]];
    a[n_] := b[n, Floor[(Sqrt[1 + 8*(n + 1)] - 1)/2], {0}];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)
Previous Showing 11-11 of 11 results.