A330785
Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Triangle begins:
1
0 1
0 1 1
0 1 3 2
0 1 5 8 4
0 1 9 25 28 11
0 1 13 57 111 99 33
0 1 20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
() (14) (113)->(14) (1112)->(113)->(14)
(23) (113)->(23) (1112)->(113)->(23)
(113) (122)->(14) (1112)->(122)->(14)
(122) (122)->(23) (1112)->(122)->(23)
(1112) (1112)->(14)
(1112)->(23)
(1112)->(113)
(1112)->(122)
The version for set partitions is
A008826.
The version for factorizations is
A330935.
Cf.
A000111,
A000258,
A000311,
A005121,
A141268,
A196545,
A265947,
A300383,
A306186,
A317141,
A317176,
A318813,
A320160,
A330679.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
A381872
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
{{1,1,1,1,2,2}}
{{2,2},{1,1,1,1}}
{{1,1,2},{1,1,2}}
{{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
{{1,1,1,1,2,2,2,2}}
{{2,2,2},{1,1,1,1,2}}
{{1,1,2,2},{1,1,2,2}}
{{2,2},{2,2},{1,1,1,1}}
{{2,2},{1,1,2},{1,1,2}}
{{1,2},{1,2},{1,2},{1,2}}
{{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
With equal blocks instead of sums we have
A089723.
Positions of terms > 1 are
A321454.
With distinct instead of equal sums we have
A381637, before sums
A321469.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
A322077
In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition whose multiplicities are the prime indices of n in weakly decreasing order.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 5, 8, 6, 7, 9, 11, 10, 12, 13, 15, 18, 22, 15, 19, 14, 30, 24, 22, 21, 40, 23, 42, 29, 56, 36, 27, 29, 34, 47, 77, 41, 39, 40
Offset: 1
The list of a(1) = 1 through a(18) = 18 coarser partitions:
() (1) (2) (3) (3) (4) (4) (6) (6) (5) (5)
(11) (21) (21) (22) (22) (33) (33) (32) (32)
(111) (31) (31) (42) (42) (41) (41)
(211) (211) (51) (51) (221) (221)
(1111) (321) (222) (311) (311)
(321) (2111) (2111)
(411) (11111)
(2211)
.
(7) (6) (6) (7) (10) (7) (9)
(43) (33) (33) (43) (55) (43) (54)
(52) (42) (42) (52) (64) (52) (63)
(61) (51) (51) (61) (73) (61) (72)
(322) (222) (222) (322) (82) (322) (81)
(331) (321) (321) (331) (91) (331) (333)
(421) (411) (411) (421) (433) (421) (432)
(511) (2211) (2211) (511) (442) (511) (441)
(3211) (3111) (3111) (2221) (532) (2221) (522)
(21111) (21111) (3211) (541) (3211) (531)
(111111) (4111) (631) (4111) (621)
(22111) (721) (22111) (711)
(4321) (31111) (3222)
(211111) (3321)
(1111111) (4221)
(4311)
(5211)
(32211)
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Length[Union[Sort/@Apply[Plus,mps[nrmptn[n]],{2}]]],{n,20}]
Comments