cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A319004 Number of ordered factorizations of n where the sequence of LCMs of the prime indices (A290103) of each factor is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 8, 1, 5, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 5, 2, 4, 1, 12, 2, 8, 2, 2, 1, 11, 1, 2, 4, 32, 2, 5, 1, 4, 2, 5, 1, 23, 1, 2, 4, 4, 2, 5, 1, 16, 8, 2, 1, 11, 2, 2, 2, 8, 1, 12, 2, 4, 2, 2, 2, 32, 1, 5, 4, 11, 1, 5, 1, 8, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of LCMs of the parts is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(60) = 11 ordered factorizations:
  (2*2*3*5),
  (2*2*15), (2*3*10), (2*6*5), (4*3*5),
  (2*30), (3*20), (4*15), (12*5), (6*10),
  (60).
The a(60) = 11 ordered multiset partitions:
     {{1,1,2,3}}
    {{1},{1,2,3}}
    {{2},{1,1,3}}
    {{1,1,2},{3}}
    {{1,1},{2,3}}
    {{1,2},{1,3}}
   {{1},{1},{2,3}}
   {{1},{2},{1,3}}
   {{1},{1,2},{3}}
   {{1,1},{2},{3}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    lix[n_]:=LCM@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[lix/@#]&]],{n,100}]
  • PARI
    is_weakly_increasing(v) = { for(i=2,#v,if(v[i]A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A319004aux(n, facs) = if(1==n, is_weakly_increasing(apply(f -> A290103(f),Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1), newfacs = List(facs); listput(newfacs,d); s += A319004aux(n/d, newfacs))); (s));
    A319004(n) = if((1==n)||isprime(n),1,A319004aux(n, List([]))); \\ Antti Karttunen, Sep 23 2018

Formula

A001055(n) <= a(n) <= A074206(n). - Antti Karttunen, Sep 23 2018

Extensions

More terms from Antti Karttunen, Sep 23 2018

A319118 Number of multimin tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 8, 1, 2, 2, 24, 1, 6, 1, 8, 2, 2, 1, 42, 2, 2, 6, 8, 1, 8, 1, 112, 2, 2, 2, 38, 1, 2, 2, 42, 1, 8, 1, 8, 8, 2, 1, 244, 2, 6, 2, 8, 1, 24, 2, 42, 2, 2, 1, 58, 1, 2, 8, 568, 2, 8, 1, 8, 2, 8, 1, 268, 1, 2, 6, 8, 2, 8, 1, 244, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.

Examples

			The a(12) = 8 multimin tree-factorizations:
  12,
  (2*6), (4*3), (6*2), (2*2*3),
  (2*(2*3)), ((2*2)*3), ((2*3)*2).
Or as series-reduced plane trees of multisets:
  112,
  (1,12), (11,2), (12,1), (1,1,2),
  (1,(1,2)), ((1,1),2), ((1,2),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[mmftrees[n]],{n,100}]

Formula

a(prime^n) = A118376(n).
a(product of n distinct primes) = A005804(n).

A319119 Number of multimin tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 3, 9, 37, 173, 921, 5185, 30497, 184469, 1140413, 7170085, 45704821
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 9 multimin tree-factorizations:
  5, 6, 8,
  (2*3), (2*4), (4*2), (2*2*2),
  (2*(2*2)), ((2*2)*2).
Or as series-reduced plane trees of multisets:
  3, 12, 111,
  (1,2), (1,11), (11,1), (1,1,1),
  (1,(1,1)), ((1,1),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Sum[Length[mmftrees[k]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,7}]

Extensions

a(11)-a(12) from Robert Price, Sep 14 2018

A319121 Number of complete multimin tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 2, 5, 18, 74, 344, 1679, 8548, 44690, 238691, 1295990, 7132509
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of at least two multimin tree-factorizations, one of each factor in a multimin factorization of n. A multimin tree-factorization is complete if the leaves are all prime numbers.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 5 trees are: 5, (2*3), (2*2*2), (2*(2*2)), ((2*2)*2).
The a(4) = 18 trees (normalized with prime(n) -> n):
  4,
  (13), (22), (112), (1111),
  (1(12)), ((12)1), ((11)2),
  (11(11)), (1(11)1), ((11)11), (1(111)), ((111)1), ((11)(11)),
  (1(1(11))), (1((11)1)), ((1(11))1), (((11)1)1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Sum[Length[Select[mmftrees[k],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]

Extensions

a(11)-a(12) from Robert Price, Sep 14 2018
Previous Showing 11-14 of 14 results.