A368099
Triangle read by rows where T(n,k) is the number of non-isomorphic k-element sets of finite nonempty multisets with cardinalities summing to n, or strict multiset partitions of weight n and length k.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 5, 1, 0, 7, 28, 22, 5, 1, 0, 11, 66, 83, 31, 5, 1, 0, 15, 134, 252, 147, 34, 5, 1, 0, 22, 280, 726, 620, 203, 35, 5, 1, 0, 30, 536, 1946, 2283, 1069, 235, 35, 5, 1, 0, 42, 1043, 4982, 7890, 5019, 1469, 248, 35, 5, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
0 3 4 1
0 5 12 5 1
0 7 28 22 5 1
0 11 66 83 31 5 1
0 15 134 252 147 34 5 1
0 22 280 726 620 203 35 5 1
0 30 536 1946 2283 1069 235 35 5 1
0 42 1043 4982 7890 5019 1469 248 35 5 1
...
Row n = 4 counts the following representatives:
. {{1,1,1,1}} {{1},{1,1,1}} {{1},{2},{1,1}} {{1},{2},{3},{4}}
{{1,1,1,2}} {{1},{1,1,2}} {{1},{2},{1,2}}
{{1,1,2,2}} {{1},{1,2,2}} {{1},{2},{1,3}}
{{1,1,2,3}} {{1},{1,2,3}} {{1},{2},{3,3}}
{{1,2,3,4}} {{1},{2,2,2}} {{1},{2},{3,4}}
{{1},{2,2,3}}
{{1},{2,3,4}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{1,2},{3,4}}
Counting connected components instead of edges gives
A321194.
For set multipartitions we have
A334550.
Cf.
A255903,
A296122,
A302545,
A306005,
A317532,
A317775,
A317794,
A317795,
A319560,
A368094,
A368095.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n],UnsameQ@@#&&Length[#]==k&]]], {n,0,5},{k,0,n}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
G(n)={my(s=0); forpart(q=n, my(p=sum(t=1, n, y^t*subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*exp(p-subst(subst(p, x, x^2), y, y^2))); s/n!}
T(n)={[Vecrev(p) | p <- Vec(G(n))]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
A323820
Number of non-isomorphic connected set-systems covering n vertices with no singletons.
Original entry on oeis.org
1, 0, 1, 6, 171, 611846, 200253853704319, 263735716028826427334553304608242, 5609038300883759793482640992086670066496449147691597380632107520565546
Offset: 0
Non-isomorphic representatives of the a(3) = 6 set-systems:
{{1,2,3}}
{{1,3},{2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
A330196
Number of unlabeled set-systems covering n vertices with no endpoints.
Original entry on oeis.org
1, 0, 1, 20, 1754
Offset: 0
Non-isomorphic representatives of the a(3) = 20 set-systems:
{12}{13}{23}
{1}{23}{123}
{12}{13}{123}
{1}{2}{13}{23}
{1}{2}{3}{123}
{1}{12}{13}{23}
{1}{2}{13}{123}
{1}{12}{13}{123}
{1}{12}{23}{123}
{12}{13}{23}{123}
{1}{2}{3}{12}{13}
{1}{2}{12}{13}{23}
{1}{2}{3}{12}{123}
{1}{2}{12}{13}{123}
{1}{2}{13}{23}{123}
{1}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}
{1}{2}{3}{12}{13}{123}
{1}{2}{12}{13}{23}{123}
{1}{2}{3}{12}{13}{23}{123}
First differences of the non-covering version
A330124.
Unlabeled set-systems with no endpoints counted by vertices are
A317794.
Unlabeled set-systems with no endpoints counted by weight are
A330054.
Unlabeled set-systems counted by vertices are
A000612.
Unlabeled set-systems counted by weight are
A283877.
A317792
Number of non-isomorphic multiset partitions, using normal multisets, of normal multisets of size n.
Original entry on oeis.org
1, 1, 3, 6, 15, 31, 73, 154, 345, 742, 1627, 3499
Offset: 0
Non-isomorphic representatives of the a(4) = 15 normal multiset partitions:
{1111}, {1112}, {1122}, {1123}, {1234},
{1}{111}, {1}{112}, {1}{122}, {1}{123}, {11}{11}, {11}{12}, {12}{12},
{1}{1}{11}, {1}{1}{12},
{1}{1}{1}{1}.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
sysnorm[{}]:={};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Union[sysnorm/@Select[Join@@mps/@allnorm[n],And@@(Union[#]==Range[Max@@#]&)/@#&]]],{n,6}]
Comments