cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A325510 Number of non-isomorphic multiset partitions of the multiset of prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 7, 16, 98, 269, 1397, 7582, 70520, 259906, 1677259, 5229112, 44726100, 666355170, 4917007185, 18459879921
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 multiset partitions:
  {{1}}  {{12}}    {{1222}}        {{12333}}
         {{1}{2}}  {{1}{222}}      {{1}{2333}}
                   {{12}{22}}      {{12}{333}}
                   {{2}{122}}      {{13}{233}}
                   {{1}{2}{22}}    {{3}{1233}}
                   {{2}{2}{12}}    {{33}{123}}
                   {{1}{2}{2}{2}}  {{1}{2}{333}}
                                   {{1}{23}{33}}
                                   {{1}{3}{233}}
                                   {{3}{12}{33}}
                                   {{3}{13}{23}}
                                   {{3}{3}{123}}
                                   {{1}{1}{1}{23}}
                                   {{1}{2}{3}{33}}
                                   {{1}{3}{3}{23}}
                                   {{1}{2}{3}{3}{3}}
		

Crossrefs

Programs

  • PARI
    \\ Requires C(sig) from A318285.
    a(n)={if(n<2, 1, my(f=factor(n!)[,2], sig=vector(vecmax(f))); for(i=1, #f, sig[f[i]]++); C(sig))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(n!).
a(n) = A318285(A181819(n!)) = A318285(A325508(n)). - Andrew Howroyd, Jan 17 2023

Extensions

a(9)-a(17) from Andrew Howroyd, Jan 17 2023

A324325 Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,4},{2,3}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{1,2},{4}}
  {{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324326(n) = A318284(n).

A321188 Number of set systems with no singletons whose multiset union is row n of A305936 (a multiset whose multiplicities are the prime indices of n).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 11, 0, 0, 0, 4, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(36) = 4 set systems with no singletons whose multiset union is {1,1,2,2,3,4}:
  {{1,2},{1,2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    hyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,UnsameQ@@#,Min@@Length/@#>1]&];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[hyp[nrmptn[n]]],{n,30}]
Previous Showing 11-13 of 13 results.