cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A323719 Array read by antidiagonals upwards where A(n, k) is the number of orderless factorizations of n with k - 1 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 3, 1, 4, 1, 6, 1, 1, 1, 1, 2, 6, 1, 5, 1, 7, 1, 1, 1, 1, 2, 3, 10, 1, 6, 1, 8, 1, 1, 1, 1, 1, 3, 4, 15, 1, 7, 1, 9, 1, 1, 1, 1, 4, 1, 4, 5, 21, 1, 8, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

An orderless factorization of n with k > 1 levels of parentheses is any multiset partition of an orderless factorization of n with k - 1 levels of parentheses. If k = 1 it is just an orderless factorization of n into factors > 1.

Examples

			Array begins:
       k=0  k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9  k=10 k=11 k=12
   n=1: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=2: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=3: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=4: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=5: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=6: 1    2    3    4    5    6    7    8    9   10   11   12   13
   n=7: 1    1    1    1    1    1    1    1    1    1    1    1    1
   n=8: 1    3    6   10   15   21   28   36   45   55   66   78   91
   n=9: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=10: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=11: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=12: 1    4    9   16   25   36   49   64   81  100  121  144  169
  n=13: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=14: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=15: 1    2    3    4    5    6    7    8    9   10   11   12   13
  n=16: 1    5   14   30   55   91  140  204  285  385  506  650  819
  n=17: 1    1    1    1    1    1    1    1    1    1    1    1    1
  n=18: 1    4    9   16   25   36   49   64   81  100  121  144  169
The A(12,3) = 16 orderless factorizations of 12 with 2 levels of parentheses:
  ((2*2*3))          ((2*6))      ((3*4))      ((12))
  ((2)*(2*3))        ((2)*(6))    ((3)*(4))
  ((3)*(2*2))        ((2))*((6))  ((3))*((4))
  ((2))*((2*3))
  ((2)*(2)*(3))
  ((3))*((2*2))
  ((2))*((2)*(3))
  ((3))*((2)*(2))
  ((2))*((2))*((3))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lev[n_,k_]:=If[k==0,{n},Join@@Table[Union[Sort/@Tuples[lev[#,k-1]&/@fac]],{fac,facs[n]}]];
    Table[Length[lev[sum-k,k]],{sum,12},{k,0,sum-1}]

A324930 Total weight of the multiset of multisets of multisets with MMM number n. Totally additive with a(prime(n)) = A302242(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 3, 2, 2, 1, 1, 0, 3, 1, 2, 0, 1, 1, 1, 1, 0, 2, 2, 0, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The finite multiset of finite multisets of finite multisets of positive integers with MMM number n is obtained by factoring n into prime numbers, then factoring each of their prime indices into prime numbers, then factoring each of their prime indices into prime numbers, and finally taking their prime indices.

Examples

			The sequence of all finite multisets of finite multisets of finite multisets of positive integers begins (o is the empty multiset):
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((1)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((1)))
  11: (((2)))
  12: (oo(o))
  13: ((o(1)))
  14: (o(oo))
  15: ((o)((1)))
  16: (oooo)
  17: (((11)))
  18: (o(o)(o))
  19: ((ooo))
  20: (oo((1)))
		

Crossrefs

Programs

  • Mathematica
    fi[n_]:=If[n==1,{},FactorInteger[n]];
    Table[Total[Cases[fi[n],{p_,k_}:>k*Total[Cases[fi[PrimePi[p]],{q_,j_}:>j*PrimeOmega[PrimePi[q]]]]]],{n,60}]

A318816 Regular tetrangle where T(n,k,i) is the number of non-isomorphic multiset partitions of length i of multiset partitions of length k of multisets of size n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 3, 4, 3, 5, 14, 14, 9, 20, 9, 5, 14, 9, 5, 7, 28, 28, 33, 80, 33, 16, 68, 52, 16, 7, 28, 33, 16, 7, 11, 69, 69, 104, 266, 104, 74, 356, 282, 74, 29, 199, 253, 118, 29, 11, 69, 104, 74, 29, 11, 15, 134, 134, 294, 800, 294, 263, 1427, 1164
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Examples

			Tetrangle begins:
  1   2     3        5             7
      2 2   4 4     14 14         28 28
            3 4 3    9 20  9      33 80 33
                     5 14  9  5   16 68 52 16
                                   7 28 33 16  7
Non-isomorphic representatives of the T(4,3,2) = 20 multiset partitions:
  {{{1}},{{1},{1,1}}}  {{{1,1}},{{1},{1}}}
  {{{1}},{{1},{1,2}}}  {{{1,1}},{{1},{2}}}
  {{{1}},{{1},{2,2}}}  {{{1,1}},{{2},{2}}}
  {{{1}},{{1},{2,3}}}  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,1}}}  {{{1,2}},{{1},{1}}}
  {{{1}},{{2},{1,2}}}  {{{1,2}},{{1},{2}}}
  {{{1}},{{2},{1,3}}}  {{{1,2}},{{1},{3}}}
  {{{1}},{{2},{3,4}}}  {{{1,2}},{{3},{4}}}
  {{{2}},{{1},{1,1}}}  {{{2,3}},{{1},{1}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
		

Crossrefs

A323786 Number of non-isomorphic weight-n multisets of multisets of non-singleton multisets.

Original entry on oeis.org

1, 0, 2, 3, 19, 39, 200, 615, 2849, 11174, 52377, 239269, 1191090, 6041975, 32275288, 177797719, 1017833092, 6014562272, 36717301665, 230947360981, 1495562098099, 9956230757240, 68070158777759, 477439197541792, 3432259679880648, 25267209686664449
Offset: 0

Views

Author

Gus Wiseman, Jan 28 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 19 multiset partitions:
  {{1111}}      {{1112}}      {{1123}}      {{1234}}
  {{11}{11}}    {{1122}}      {{11}{23}}    {{12}{34}}
  {{11}}{{11}}  {{11}{12}}    {{12}{13}}    {{12}}{{34}}
                {{11}{22}}    {{11}}{{23}}
                {{12}{12}}    {{12}}{{13}}
                {{11}}{{12}}
                {{11}}{{22}}
                {{12}}{{12}}
Non-isomorphic representatives of the a(5) = 39 multiset partitions:
  {{11111}}      {{11112}}      {{11123}}      {{11234}}      {{12345}}
  {{11}{111}}    {{11122}}      {{11223}}      {{11}{234}}    {{12}{345}}
  {{11}}{{111}}  {{11}{112}}    {{11}{123}}    {{12}{134}}    {{12}}{{345}}
                 {{11}{122}}    {{11}{223}}    {{23}{114}}
                 {{12}{111}}    {{12}{113}}    {{11}}{{234}}
                 {{12}{112}}    {{12}{123}}    {{12}}{{134}}
                 {{22}{111}}    {{13}{122}}    {{23}}{{114}}
                 {{11}}{{112}}  {{23}{111}}
                 {{11}}{{122}}  {{11}}{{123}}
                 {{12}}{{111}}  {{11}}{{223}}
                 {{12}}{{112}}  {{12}}{{113}}
                 {{22}}{{111}}  {{12}}{{123}}
                                {{13}}{{122}}
                                {{23}}{{111}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp(sExp(A-x*sv(1)))))} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 17 2023

A330457 Number of multisets of nonempty multisets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 3, 7, 17, 37, 87, 187, 414, 887, 1903, 4008, 8437, 17519, 36255, 74384, 151898, 308129, 622269, 1249768, 2499392, 4975421, 9865122, 19481300, 38331536, 75149380, 146840801, 285990797, 555297342, 1074996017, 2075201544, 3995079507, 7671034324, 14692086594
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 17 partitions:
  ((4))  ((13))      ((1)(12))        ((2)(2))    ((1)(1)(1)(1))
         ((1)(3))    ((1)(1)(2))      ((2))((2))  ((1))((1)(1)(1))
         ((1))((3))  ((1))((12))                  ((1)(1))((1)(1))
                     ((1))((1)(2))                ((1))((1))((1)(1))
                     ((2))((1)(1))                ((1))((1))((1))((1))
                     ((1))((1))((2))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And@@UnsameQ@@@Join@@#&]],{n,0,10}]

Formula

Euler transform of A089259. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.

A330464 Number of non-isomorphic weight-n sets of set-systems with distinct multiset unions.

Original entry on oeis.org

1, 1, 3, 9, 32, 111, 463, 1942
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
As an alternative description, a(n) is the number of non-isomorphic sets of sets of sets with n leaves where the inner sets of sets all have different multiset unions.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets:
  {}  {{{1}}}  {{{1,2}}}      {{{1,2,3}}}
               {{{1},{2}}}    {{{1},{1,2}}}
               {{{1}},{{2}}}  {{{1},{2,3}}}
                              {{{1}},{{1,2}}}
                              {{{1}},{{2,3}}}
                              {{{1},{2},{3}}}
                              {{{1}},{{1},{2}}}
                              {{{1}},{{2},{3}}}
                              {{{1}},{{2}},{{3}}}
		

Crossrefs

Non-isomorphic sets of sets are A283877.
Non-isomorphic sets of sets of sets are A323790.
Non-isomorphic set partitions of set-systems are A323795.
Previous Showing 11-16 of 16 results.