A344088 Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.
1, 2, 1, 2, 3, 1, 3, 4, 2, 3, 1, 4, 5, 1, 2, 3, 2, 4, 1, 5, 6, 1, 2, 4, 3, 4, 2, 5, 1, 6, 7, 1, 3, 4, 1, 2, 5, 3, 5, 2, 6, 1, 7, 8, 2, 3, 4, 1, 3, 5, 4, 5, 1, 2, 6, 3, 6, 2, 7, 1, 8, 9, 1, 2, 3, 4, 2, 3, 5, 1, 4, 5, 1, 3, 6, 4, 6, 1, 2, 7, 3, 7, 2, 8, 1, 9, 10
Offset: 0
Examples
Tetrangle begins: 0: () 1: (1) 2: (2) 3: (12)(3) 4: (13)(4) 5: (23)(14)(5) 6: (123)(24)(15)(6) 7: (124)(34)(25)(16)(7) 8: (134)(125)(35)(26)(17)(8) 9: (234)(135)(45)(126)(36)(27)(18)(9)
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Positions of first appearances are A015724.
Triangle sums are A066189.
The non-strict version is A080576.
The non-reversed version is A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Programs
-
Mathematica
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]]; Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
Comments