cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A332949 Number of entries in the ninth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 91, 2531, 56717, 1052130, 17011450, 248006774, 3363718597, 43354519587, 537399621668, 6456347423794, 75743936924077, 874027443321519, 9978667891988711, 113225455087566673, 1281748270131892718, 14527578406583077101, 165413377044356558731
Offset: 9

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=9 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 9)[2]:
    seq(a(n), n=9..26);

A332950 Number of entries in the tenth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 111, 3697, 97605, 2126580, 40204179, 681004277, 10645001317, 156970929310, 2213900198635, 30121302914917, 398061723460524, 5142929025812977, 65335359570066118, 819943536213362166, 10204014403455526051, 126342880437736660311, 1561117416681285339037
Offset: 10

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=10 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 10)[2]:
    seq(a(n), n=10..27);

A350202 Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			Triangle T(n,k) begins:
         1;
         7,        1;
        61,       19,        1;
       709,      277,       37,       1;
      9911,     4841,      811,      61,      1;
    167111,    91151,    19706,    1876,     91,    1;
   3237921,  1976570,   486214,   60229,   3739,  127,   1;
  71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
  ...
		

Crossrefs

Column k=1 gives A350157.
Row sums give A007778.
T(n+1,n) gives A003215 for n>=1.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    T:= (n, k)-> b(n, 1, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
    T[n_, k_] := b[n, 1, k][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
Previous Showing 11-13 of 13 results.