cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A319474 Number of partitions of n into exactly nine nonzero decimal palindromes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 68, 85, 109, 134, 167, 200, 244, 286, 341, 395, 460, 523, 600, 671, 756, 835, 926, 1008, 1103, 1185, 1280, 1360, 1450, 1524, 1609, 1673, 1748, 1803, 1867, 1910, 1965, 1996, 2039, 2063, 2096
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Crossrefs

Column k=9 of A319453.
Cf. A002113.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i (k-> b(n, h(n), k)-b(n, h(n), k-1))(9):
    seq(a(n), n=0..100);
  • Mathematica
    Table[Count[IntegerPartitions[n,{9}],?(AllTrue[#,PalindromeQ]&)],{n,0,60}] (* _Harvey P. Dale, May 24 2025 *)

Formula

a(n) = [x^n y^9] 1/Product_{j>=2} (1-y*x^A002113(j)).

A319475 Number of partitions of n into exactly ten nonzero decimal palindromes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 52, 70, 88, 114, 141, 178, 215, 265, 315, 380, 445, 526, 606, 705, 801, 916, 1027, 1159, 1282, 1427, 1561, 1715, 1855, 2015, 2157, 2318, 2458, 2614, 2747, 2897, 3018, 3157, 3266, 3390, 3485
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Crossrefs

Column k=10 of A319453.
Cf. A002113.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i (k-> b(n, h(n), k)-b(n, h(n), k-1))(10):
    seq(a(n), n=0..100);

Formula

a(n) = [x^n y^10] 1/Product_{j>=2} (1-y*x^A002113(j)).

A319454 Number of partitions of 2n into exactly n nonzero decimal palindromes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 53, 72, 92, 121, 153, 197, 245, 310, 381, 475, 579, 711, 858, 1043, 1248, 1501, 1783, 2126, 2507, 2966, 3476, 4083, 4757, 5551, 6433, 7464, 8606, 9931, 11398, 13089, 14957, 17099, 19461, 22153, 25120, 28483, 32183, 36361
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
          t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, h(2*n), n)-b(2*n, h(2*n), n-1)):
    seq(a(n), n=0..70);

Formula

a(n) = [x^(2n) y^n] 1/Product_{j>=2} (1-y*x^A002113(j)).
a(n) = A319453(2n,n).
Previous Showing 11-13 of 13 results.