cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A320635 MM-numbers of simple labeled connected graphs spanning an initial interval of positive integers.

Original entry on oeis.org

13, 377, 611, 1363, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 147533, 203087, 301129, 315433, 467711, 761917, 1183403, 1280669, 1293487, 1917929, 2075567, 2174159, 2220907, 2415439, 2640131
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
       13: {{1,2}}
      377: {{1,2},{1,3}}
      611: {{1,2},{2,3}}
     1363: {{1,3},{2,3}}
    16211: {{1,2},{1,3},{1,4}}
    17719: {{1,2},{1,3},{2,3}}
    26273: {{1,2},{1,4},{2,3}}
    27521: {{1,2},{1,3},{2,4}}
    44603: {{1,2},{2,3},{2,4}}
    56173: {{1,2},{1,3},{3,4}}
    58609: {{1,3},{1,4},{2,3}}
    83291: {{1,2},{1,4},{3,4}}
    91031: {{1,3},{1,4},{2,4}}
    91039: {{1,2},{2,3},{3,4}}
    99499: {{1,3},{2,3},{2,4}}
   141401: {{1,2},{2,4},{3,4}}
   147533: {{1,4},{2,3},{2,4}}
   203087: {{1,3},{2,3},{3,4}}
   301129: {{1,4},{2,3},{3,4}}
   315433: {{1,3},{2,4},{3,4}}
   467711: {{1,4},{2,4},{3,4}}
   761917: {{1,2},{1,3},{1,4},{2,3}}
  1183403: {{1,2},{1,3},{1,4},{2,4}}
  1280669: {{1,2},{1,3},{1,4},{1,5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#]),Length[zsm[primeMS[#]]]==1]&]

A322552 MM-numbers of triangles.

Original entry on oeis.org

17719, 40807, 140699, 185803, 219271, 421031, 511219, 570011, 588787, 897689, 916777, 1321433, 1581827, 1654823, 1769609, 1854983, 2028181, 2358773, 2456737, 2943343, 3641501, 3705221, 3890389, 3902981, 4186793, 4807489, 5176613, 5263759, 5693197, 6308857, 6515111, 6566717
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
Sequence consists of terms of the form prime(p*q) * prime(p*r) * prime(q*r), with p, q, and r distinct primes. - Charlie Neder, Dec 23 2018

Examples

			The sequence of triangles whose MM-numbers belong to the sequence begins:
   17719: {{1,2},{1,3},{2,3}}
   40807: {{1,2},{1,4},{2,4}}
  140699: {{1,2},{1,5},{2,5}}
  185803: {{1,3},{1,4},{3,4}}
  219271: {{1,2},{1,6},{2,6}}
  421031: {{1,2},{1,7},{2,7}}
  511219: {{2,3},{2,4},{3,4}}
  570011: {{1,2},{1,8},{2,8}}
  588787: {{1,3},{1,5},{3,5}}
  897689: {{1,2},{1,9},{2,9}}
  916777: {{1,3},{1,6},{3,6}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100000],And[SquareFreeQ[#],PrimeOmega[#]==3,And@@(SquareFreeQ[#]&&PrimeOmega[#]==2&/@primeMS[#]),SameQ[##,2]&@@Length/@Split[Sort[Join@@primeMS/@primeMS[#]]]]&]

Extensions

a(12)-a(32) from Charlie Neder, Dec 27 2018

A322555 Number of labeled simple graphs on n vertices where all non-isolated vertices have the same degree.

Original entry on oeis.org

1, 1, 2, 5, 18, 69, 390, 2703, 59474, 1548349, 168926258, 12165065351, 7074423247562, 2294426405580191, 4218009215702391954, 3810376434461484994317, 35102248193591661086921250, 156873334244228518638713087133, 4144940994226400702145709978234154
Offset: 0

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

Such graphs may be said to have regular support.

Examples

			The a(4) = 18 edge sets:
  {}
  {{1,2}}
  {{1,3}}
  {{1,4}}
  {{2,3}}
  {{2,4}}
  {{3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,4},{2,4}}
  {{1,3},{1,4},{3,4}}
  {{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],SameQ@@Length/@Split[Sort[Join@@#]]&]],{n,6}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n, k)*(A295193(k) - 1). - Andrew Howroyd, Dec 17 2018

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 17 2018
a(16)-a(18) from Andrew Howroyd, May 21 2020
Previous Showing 11-13 of 13 results.