A368726 Number of non-isomorphic connected multiset partitions of weight n into singletons or pairs.
1, 1, 3, 3, 8, 10, 26, 38, 93, 161, 381, 732, 1721, 3566, 8369, 18316, 43280, 98401, 234959, 549628, 1327726, 3175670, 7763500, 18905703, 46762513, 115613599, 289185492, 724438500, 1831398264, 4641907993, 11853385002, 30365353560
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(5) = 10 multiset partitions: {{1}} {{1,1}} {{1},{1,1}} {{1,1},{1,1}} {{1},{1,1},{1,1}} {{1,2}} {{2},{1,2}} {{1,2},{1,2}} {{1},{1,2},{2,2}} {{1},{1}} {{1},{1},{1}} {{1,2},{2,2}} {{2},{1,2},{1,2}} {{1,3},{2,3}} {{2},{1,2},{2,2}} {{1},{1},{1,1}} {{2},{1,3},{2,3}} {{1},{2},{1,2}} {{3},{1,3},{2,3}} {{2},{2},{1,2}} {{1},{1},{1},{1,1}} {{1},{1},{1},{1}} {{1},{2},{2},{1,2}} {{2},{2},{2},{1,2}} {{1},{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute /@ Select[mpm[n], Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]
Formula
Inverse Euler transform of A320663.