cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A323523 Number of positive integer square matrices with entries summing to n and equal row and column sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 12, 1, 7, 22, 9, 1, 64, 1, 34, 121, 11, 1, 525, 2, 13, 407, 2022, 1, 801, 1, 10163, 1036, 17, 6211, 41735, 1, 19, 2212, 285784, 1, 3822, 1, 381446, 2229142, 23, 1, 1189540, 2, 22069276, 7261, 2309410, 1, 20943183, 164176641
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Comments

Also the number of non-normal semi-magic squares with positive integer entries summing to n.

Examples

			The a(12) = 12 matrices:
  [12]
.
  [1 5] [5 1] [2 4] [4 2] [3 3]
  [5 1] [1 5] [4 2] [2 4] [3 3]
.
  [1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
  [1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
  [2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnsqrs[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),And[SameQ@@Length/@#,Length[#]==0||Length[#]==Length[First[#]]]&];
    Table[Sum[Length[Select[ptnsqrs[Times@@Prime/@y],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]],{y,IntegerPartitions[n]}],{n,10}]

Formula

a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019
a(n) = Sum_{d|n, d<=n/d} A257493(d, n/d-d) for n > 0. - Andrew Howroyd, Apr 10 2020

Extensions

a(16)-a(55) from Chai Wah Wu, Jan 20 2019

A321734 Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.

Original entry on oeis.org

1, 1, 3, 9, 37, 177, 1054, 7237, 57447, 512664, 5101453, 55870885, 668438484, 8667987140, 121123281293, 1814038728900, 28988885491655, 492308367375189, 8854101716492463, 168108959387012804, 3360171602215686668, 70527588239926854144, 1550926052235372201700
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Examples

			The a(3) = 9 matrices:
  [3]
.
  [2 0] [1 1]
  [0 1] [1 0]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]

Formula

Let c(y) be the coefficient of m(y) in h(y), where m is monomial symmetric functions and h is homogeneous symmetric functions. Then a(n) = Sum_{|y| = n} c(y).

Extensions

a(11) - a(22) from Ludovic Schwob, Sep 29 2023

A323524 Number of integer partitions of n whose parts can be arranged into a square matrix with equal row and column sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 5, 1, 4, 4, 6, 1, 10, 1, 7, 10, 6, 1, 24, 2, 7, 22, 18, 1, 38, 1, 35, 43, 9, 6, 124, 1, 10, 77, 158, 1, 110, 1, 285, 186, 12, 1, 742, 2, 170, 203, 1110, 1, 285, 480, 2115, 306, 15, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 5 integer partitions are (12), (5,5,1,1), (4,4,2,2), (3,3,3,3), (2,2,2,1,1,1,1,1,1). For example, such a matrix for (2,2,2,1,1,1,1,1,1) is:
  [1 1 2]
  [2 1 1]
  [1 2 1]
		

Crossrefs

Formula

a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019

Extensions

a(16)-a(59) from Chai Wah Wu, Jan 20 2019
Previous Showing 11-13 of 13 results.