cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A327291 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size eight are used and the colors are introduced in increasing order.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 326, 532, 879, 1417, 2272, 3563, 5572, 8543, 13031, 19596, 29671, 43971, 65293, 95783, 140259, 203281, 294069, 421433, 602382, 854470, 1207812, 1700895, 2382536, 3323738, 4619166, 6394401, 8817059, 12117260, 16588535, 22637178
Offset: 36

Views

Author

Alois P. Heinz, Aug 28 2019

Keywords

Crossrefs

Column k=8 of A321878.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(8):
    seq(a(n), n=36..75);

Formula

a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-7))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-7)) / (4*8!*sqrt(24)*Pi*n). - Vaclav Kotesovec, Sep 18 2019

A327292 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size nine are used and the colors are introduced in increasing order.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 515, 819, 1332, 2102, 3327, 5142, 7958, 12071, 18271, 27256, 40462, 60036, 87981, 128502, 186484, 269466, 386757, 553271, 786299, 1113510, 1568109, 2199730, 3069546, 4278447, 5924730, 8188867, 11266659, 15464516, 21134748
Offset: 45

Views

Author

Alois P. Heinz, Aug 28 2019

Keywords

Crossrefs

Column k=9 of A321878.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(9):
    seq(a(n), n=45..83);

Formula

a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-8))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-8)) / (4*9!*sqrt(27)*Pi*n). - Vaclav Kotesovec, Sep 18 2019

A327293 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size ten are used and the colors are introduced in increasing order.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 795, 1250, 1982, 3087, 4798, 7332, 11191, 16821, 25196, 37308, 54951, 80131, 117346, 169306, 244417, 349967, 500258, 709715, 1005550, 1414751, 1986544, 2773496, 3861747, 5349095, 7389698, 10178856, 13964050, 19102030
Offset: 55

Views

Author

Alois P. Heinz, Aug 28 2019

Keywords

Comments

In general, for k>=1, is column k of A321878 asymptotic to exp(sqrt(2*(Pi^2 - 6*polylog(2, 1-k))*n/3)) * sqrt(Pi^2 - 6*polylog(2, 1-k)) / (4*k!*sqrt(3*k)*Pi*n). - Vaclav Kotesovec, Sep 18 2019

Crossrefs

Column k=10 of A321878.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(10):
    seq(a(n), n=55..93);

Formula

a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-9))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-9)) / (4*10!*sqrt(30)*Pi*n). - Vaclav Kotesovec, Sep 18 2019
Previous Showing 11-13 of 13 results.