cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A322206 G.f.: exp( Sum_{n>=1} A322205(n)*x^n/n ), where A322205(n) is the coefficient of x^(2*n)*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)).

Original entry on oeis.org

1, 1, 4, 14, 63, 294, 1526, 8157, 45332, 257378, 1489539, 8744722, 51965701, 311915649, 1888382937, 11517313486, 70699038868, 436454255701, 2708000234769, 16877547822830, 105614312726477, 663314865710063, 4179789872458354, 26418030929753007, 167435388627981690, 1063892712455899336, 6775891814778961392, 43249097401730644817, 276606084622479837727, 1772391802339441687335, 11376702892986621823617
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 63*x^4 + 294*x^5 + 1526*x^6 + 8157*x^7 + 45332*x^8 + 257378*x^9 + 1489539*x^10 + 8744722*x^11 + 51965701*x^12 + ...
such that
log( A(x) ) = x + 7*x^2/2 + 31*x^3/3 + 179*x^4/4 + 1006*x^5/5 + 6265*x^6/6 + 38767*x^7/7 + 245515*x^8/8 + 1562368*x^9/9 + 10017042*x^10/10 + ... + A322205(n)*x^n/n + ...
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2 + 67*x^3 + 333*x^4 + 1686*x^5 + 9031*x^6 + 49629*x^7 + 280467*x^8 + 1614932*x^9 + 9449961*x^10 + 56001366*x^11 + 335437797*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {L = sum(n=1,81, -log(1 - (x^n + y^n) +O(x^81) +O(y^81)) );}
    {A322205(n) = polcoeff( n*polcoeff( L,2*n,x),n,y)}
    {a(n) = polcoeff( exp( sum(m=1,n, A322205(m)*x^m/m ) +x*O(x^n) ),n) }
    for(n=0,40, print1( a(n),", ") )

A322208 G.f.: exp( Sum_{n>=1} A322207(n)*x^n/n ), where A322207(n) is the coefficient of x^(3*n)*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)).

Original entry on oeis.org

1, 1, 5, 24, 150, 1002, 7296, 55082, 429803, 3429141, 27861573, 229668027, 1916090676, 16147650896, 137259255191, 1175441115628, 10131538868330, 87826869133114, 765203002559216, 6697119583569563, 58852148074050440, 519073825025517314, 4593478958169093555, 40773010611894321971, 362920132925603812683, 3238611637275915021439, 28968760785263718554360
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 24*x^3 + 150*x^4 + 1002*x^5 + 7296*x^6 + 55082*x^7 + 429803*x^8 + 3429141*x^9 + 27861573*x^10 + 229668027*x^11 + 1916090676*x^12 + ...
such that
log( A(x) ) = x + 9*x^2/2 + 58*x^3/3 + 473*x^4/4 + 3881*x^5/5 + 33786*x^6/6 + 296017*x^7/7 + 2630521*x^8/8 + 23535994*x^9/9 + 211922929*x^10/10 + ... + A322207(n)*x^n/n + ...
RELATED SERIES.
A(x)^4 = 1 + 4*x + 26*x^2 + 160*x^3 + 1099*x^4 + 7856*x^5 + 59090*x^6 + 457876*x^7 + 3639573*x^8 + 29479584*x^9 + 242474096*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {L = sum(n=1,121, -log(1 - (x^n + y^n) +O(x^121) +O(y^121)) );}
    {A322207(n) = polcoeff( n*polcoeff( L,3*n,x),n,y)}
    {a(n) = polcoeff( exp( sum(m=1,n, A322207(m)*x^m/m ) +x*O(x^n) ),n) }
    for(n=0,40, print1( a(n),", ") )
Previous Showing 11-12 of 12 results.