cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A332912 Number of entries in the eighth cycles of all permutations of [n] when cycles are ordered by increasing lengths.

Original entry on oeis.org

1, 73, 2026, 51866, 1205832, 26820444, 590148378, 13100356128, 295439599773, 6807481609901, 160887057723746, 3910224803769926, 97864814302511668, 2524228366327596948, 67113790045849483056, 1839604074821982820944, 51976021537896649002555
Offset: 8

Views

Author

Alois P. Heinz, Mar 02 2020

Keywords

Crossrefs

Column k=8 of A322383.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 8)[2]:
    seq(a(n), n=8..24);

A332913 Number of entries in the ninth cycles of all permutations of [n] when cycles are ordered by increasing lengths.

Original entry on oeis.org

1, 91, 3026, 90597, 2439516, 61989747, 1538707458, 38139479553, 953072924061, 24163160247008, 624376555920980, 16498591390522978, 446749936369626468, 12412653806246040786, 354123558880901036688, 10378353585187092249138, 312512449355524805863371
Offset: 9

Views

Author

Alois P. Heinz, Mar 02 2020

Keywords

Crossrefs

Column k=9 of A322383.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 9)[2]:
    seq(a(n), n=9..25);

A332914 Number of entries in the tenth cycles of all permutations of [n] when cycles are ordered by increasing lengths.

Original entry on oeis.org

1, 111, 4357, 150801, 4654469, 134049203, 3729595473, 102656565841, 2828539643998, 78576462334232, 2212108223706338, 63356175294304198, 1851016172004724086, 55265191691761995338, 1688128671403459821842, 52796230233728968111746, 1691419149055825399281421
Offset: 10

Views

Author

Alois P. Heinz, Mar 02 2020

Keywords

Crossrefs

Column k=10 of A322383.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 10)[2]:
    seq(a(n), n=10..26);

A350202 Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			Triangle T(n,k) begins:
         1;
         7,        1;
        61,       19,        1;
       709,      277,       37,       1;
      9911,     4841,      811,      61,      1;
    167111,    91151,    19706,    1876,     91,    1;
   3237921,  1976570,   486214,   60229,   3739,  127,   1;
  71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
  ...
		

Crossrefs

Column k=1 gives A350157.
Row sums give A007778.
T(n+1,n) gives A003215 for n>=1.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
            b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
             (n, i$j, n-i*j)), j=0..n/i)))
        end:
    T:= (n, k)-> b(n, 1, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
    T[n_, k_] := b[n, 1, k][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
Previous Showing 11-14 of 14 results.