cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A351443 Odd numbers k for which A003958(sigma(k)) = A003958(k), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 49, 40905, 106353, 140211, 275301, 302697, 499041, 597213, 1094913, 1284417, 1578933, 2004345, 2266137, 2560653, 3247857, 3444201, 3738717, 4425921, 5014953, 5123817, 5211297, 5407641, 5505813, 5996673, 6193017, 6870339, 7174737, 8156457, 8941833, 9432693, 9825381, 9923553
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Odd numbers k for which A351442(k) = A003958(k), or equally, for which k = A351444(k) = A322582(k) + A351442(k).
The 13th term, 2004345, is one of the rare abundant numbers (A005101, A005231) in this sequence.

Crossrefs

Odd terms in A351446.
These terms doubled form a subsequence of A351447.

Programs

A351444 a(n) = n - A003958(n) + A003958(sigma(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 2, 9, 3, 6, 2, 15, 17, 10, 3, 16, 7, 10, 9, 45, 5, 38, 5, 28, 10, 16, 3, 30, 39, 26, 23, 28, 9, 26, 2, 55, 15, 26, 13, 104, 19, 28, 21, 52, 13, 32, 11, 46, 53, 28, 3, 76, 49, 94, 23, 76, 9, 54, 19, 58, 25, 46, 9, 64, 31, 34, 51, 189, 29, 50, 17, 76, 27, 50, 5, 164, 37, 74, 73, 82, 19, 66, 5, 136
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (fixed points), A351443 (odd terms there).

Programs

Formula

a(n) = A322582(n) + A351442(n) = n - A003958(n) + A003958(sigma(n)).
a(n) = n + A351445(n).

A348928 a(n) = gcd(n, A003958(n)), where A003958 is multiplicative with a(p^e) = (p-1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 5, 2, 3, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126864 for the first time at n=36, where a(36) = 4, while A126864(36) = 2.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A348928(n) = gcd(n, A003958(n));

Formula

a(n) = gcd(n, A003958(n)) = gcd(n, A322582(n)) = gcd(A003958(n), A322582(n)).

A348975 a(n) = A003415(n) + A003958(n) - n, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 5, 1, 1, 0, 6, 0, 1, 1, 17, 0, 7, 0, 8, 1, 1, 0, 22, 1, 1, 8, 10, 0, 9, 0, 49, 1, 1, 1, 28, 0, 1, 1, 32, 0, 11, 0, 14, 10, 1, 0, 66, 1, 11, 1, 16, 0, 35, 1, 42, 1, 1, 0, 40, 0, 1, 12, 129, 1, 15, 0, 20, 1, 13, 0, 88, 0, 1, 12, 22, 1, 17, 0, 100, 43, 1, 0, 52, 1, 1, 1, 62, 0, 49, 1, 26, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

No negative terms. See comments in A322582.
This is the difference between the arithmetic derivative of n [= A003415(n)] and its guaranteed lower bound A322582(n) [= n - A003958(n)].

Crossrefs

Cf. also A348970 for the corresponding difference from a guaranteed upper bound.

Programs

  • Mathematica
    MapAt[# + 1 &, Array[If[# < 2, 0, # Total[#2/#1 & @@@ #2]] + Times @@ Map[(#1 - 1)^#2 & @@ # &, #2] - #1 & @@ {#, FactorInteger[#]} &, 95], 1] (* Michael De Vlieger, Mar 15 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348975(n) = (A003415(n) - A322582(n));

Formula

a(n) = A003415(n) - A322582(n).
a(n) = A003958(n) + A168036(n).
Previous Showing 11-14 of 14 results.