cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A360810 Expansion of Sum_{k>=0} ( x / (1 - k * x^2) )^k.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 29, 81, 229, 696, 2181, 7045, 23653, 81433, 288173, 1046814, 3887749, 14768783, 57275541, 226462801, 912443397, 3741515804, 15603500797, 66134448329, 284660214181, 1243605590897, 5511058189989, 24760003963802, 112726590916645
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k*x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k*binomial(n-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n-k-1,k).

A360801 Expansion of Sum_{k>0} (x / (1 - 2 * x^k))^k.

Original entry on oeis.org

1, 3, 5, 13, 17, 51, 65, 169, 281, 603, 1025, 2373, 4097, 8655, 16685, 33969, 65537, 134151, 262145, 530269, 1050481, 2108439, 4194305, 8420201, 16778337, 33607707, 67120565, 134338493, 268435457, 537151131, 1073741825, 2148024289, 4295035145, 8591048739
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-2*x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d+n/d-2, d-1));

Formula

a(n) = Sum_{d|n} 2^(n/d-1) * binomial(d+n/d-2,d-1).
If p is prime, a(p) = 1 + 2^(p-1).
Previous Showing 11-12 of 12 results.